1
|
Kitamura Y, Minobe K, Nakata T, et al:
Ret/PTC3 is the most frequent form of gene rearrangement in
papillary thyroid carcinomas in Japan. J Hum Genet. 44:96–102.
1999. View Article : Google Scholar : PubMed/NCBI
|
2
|
Jemal A, Tiwari RC, Murray T, et al:
Cancer statistics, 2004. CA Cancer J Clin. 54:8–29. 2004.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Lang BH, Chow SM, Lo CY, et al: Staging
systems for papillary thyroid carcinoma: a study of 2 tertiary
referral centers. Ann Surg. 246:114–121. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kimura ET, Nikiforova MN, Zhu Z, Knauf JA,
Nikiforov YE and Fagin JA: High prevalence of BRAF mutations in
thyroid cancer: genetic evidence for constitutive activation of the
RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma.
Cancer Res. 63:1454–1457. 2003.PubMed/NCBI
|
5
|
Melillo RM, Castellone MD, Guarino V, et
al: The RET/PTC-RAS-BRAF linear signaling cascade mediates the
motile and mitogenic phenotype of thyroid cancer cells. J Clin
Invest. 115:1068–1081. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Cohen Y, Xing M, Mambo E, et al: BRAF
mutation in papillary thyroid carcinoma. J Natl Cancer Inst.
95:625–627. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Fusco A, Viglietto G and Santoro M: A new
mechanism of BRAF activation in human thyroid papillary carcinomas.
J Clin Invest. 115:20–23. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Nikiforova MN, Kimura ET, Gandhi M, et al:
BRAF mutations in thyroid tumors are restricted to papillary
carcinomas and anaplastic or poorly differentiated carcinomas
arising from papillary carcinomas. J Clin Endocrinol Metab.
88:5399–5404. 2003. View Article : Google Scholar : PubMed/NCBI
|
9
|
Jhiang SM, Sagartz JE, Tong Q, et al:
Targeted expression of the ret/PTC1 oncogene induces papillary
thyroid carcinomas. Endocrinology. 137:375–378. 1996.PubMed/NCBI
|
10
|
Tallini G, Santoro M, Helie M, et al:
RET/PTC oncogene activation defines a subset of papillary thyroid
carcinomas lacking evidence of progression to poorly differentiated
or undifferentiated tumor phenotypes. Clin Cancer Res. 4:287–294.
1998.PubMed/NCBI
|
11
|
Ciledag N, Arda K, Aribas BK, Aktas E and
Köse SK: The utility of ultrasound elastography and MicroPure
imaging in the differentiation of benign and malignant thyroid
nodules. AJR Am J Roentgenol. 198:W244–W249. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Giordano TJ, Kuick R, Thomas DG, et al:
Molecular classification of papillary thyroid carcinoma: distinct
BRAF, RAS, and RET/PTC mutation-specific gene expression profiles
discovered by DNA microarray analysis. Oncogene. 24:6646–6656.
2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Jarzab B, Wiench M, Fujarewicz K, et al:
Gene expression profile of papillary thyroid cancer: sources of
variability and diagnostic implications. Cancer Res. 65:1587–1597.
2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Prasad ML, Pellegata NS, Kloos RT,
Barbacioru C, Huang Y and de la Chapelle A: CITED1 protein
expression suggests papillary thyroid carcinoma in high throughput
tissue microarray-based study. Thyroid. 14:169–175. 2004.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Vasko V, Espinosa AV, Scouten W, et al:
Gene expression and functional evidence of
epithelial-to-mesenchymal transition in papillary thyroid carcinoma
invasion. Proc Natl Acad Sci USA. 104:2803–2808. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
He H, Jazdzewski K, Li W, et al: The role
of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad
Sci USA. 102:19075–19080. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Smyth GK: Limma: linear models for
microarray data. Bioinformatics and Computational Biology Solutions
using R and Bioconductor. Gentleman R, et al: Springer; New York:
pp. 397–420. 2005, View Article : Google Scholar
|
18
|
Benjamini Y and Hochberg Y: Controlling
the false discovery rate: a practical and powerful approach to
multiple testing. J R Stat Soc Series B Stat Methodol. 57:289–300.
1995.
|
19
|
Wingender E, Kel AE, Kel OV, et al:
TRANSFAC, TRRD and COMPEL: towards a federated database system on
transcriptional regulation. Nucleic Acids Res. 25:265–268. 1997.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Smoot ME, Ono K, Ruscheinski J, Wang PL
and Ideker T: Cytoscape 2.8: new features for data integration and
network visualization. Bioinformatics. 27:431–432. 2011. View Article : Google Scholar :
|
21
|
Huang da W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Huang Y, Prasad M, Lemon WJ, et al: Gene
expression in papillary thyroid carcinoma reveals highly consistent
profiles. Proc Natl Acad Sci USA. 98:15044–15049. 2001. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hawthorn L, Stein L, Varma R, Wiseman S,
Loree T and Tan D: TIMP1 and SERPIN-A overexpression and TFF3 and
CRABP1 underexpression as biomarkers for papillary thyroid
carcinoma. Head Neck. 26:1069–1083. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Finley DJ, Arora N, Zhu B, Gallagher L and
Fahey TJ III: Molecular profiling distinguishes papillary carcinoma
from benign thyroid nodules. J Clin Endocrinol Metab. 89:3214–3223.
2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Takano T, Miyauchi A, Yoshida H, Kuma K
and Amino N: High-throughput differential screening of mRNAs by
serial analysis of gene expression: decreased expression of trefoil
factor 3 mRNA in thyroid follicular carcinomas. Br J Cancer.
90:1600–1605. 2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Qin XQ, Beckham C, Brown JL, et al: Human
and mouse IFN-beta gene therapy exhibits different anti-tumor
mechanisms in mouse models. Mol Ther. 4:356–364. 2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Mccarthy N: Tumorigenesis: Cut here for
differentiation. Nat Rev Cancer. 12:3202012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Arden KC: Multiple roles of FOXO
transcription factors in mammalian cells point to multiple roles in
cancer. Exp Gerontol. 41:709–717. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Reagan-Shaw S and Ahmad N: The role of
Forkhead-box Class O (FoxO) transcription factors in cancer: a
target for the management of cancer. Toxicol Appl Pharmacol.
224:360–368. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Nucera C, Eeckhoute J, Finn S, et al:
FOXA1 is a potential oncogene in anaplastic thyroid carcinoma. Clin
Cancer Res. 15:3680–3689. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kim HS, Kim Do H, Kim JY, et al:
Microarray analysis of papillary thyroid cancers in Korean. Korean
J Intern Med. 25:399–407. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Akagi T, Luong QT, Gui D, et al: Induction
of sodium iodide symporter gene and molecular characterisation of
HNF3 beta/FoxA2, TTF-1 and C/EBP beta in thyroid carcinoma cells.
Br J Cancer. 99:781–788. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yashiro T, Arai M, Shizume K, et al:
Increased activity of insulin-like growth factor-binding protein in
human thyroid papillary cancer tissue. Jpn J Cancer Res. 85:46–52.
1994. View Article : Google Scholar : PubMed/NCBI
|
34
|
Soikkeli J, Podlasz P, Yin M, et al:
Metastatic outgrowth encompasses COL-I, FN1, and POSTN upregulation
and assembly to fibrillar networks regulating cell adhesion,
migration, and growth. Am J Pathol. 177:387–403. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Takano T, Matsuzuka F, Sumizaki H, Kuma K
and Amino N: Rapid detection of specific messenger RNAs in thyroid
carcinomas by reverse transcription-PCR with degenerate primers:
specific expression of oncofetal fibronectin messenger RNA in
papillary carcinoma. Cancer Res. 57:3792–3797. 1997.PubMed/NCBI
|
36
|
Soto JL, Cabrera CM, Serrano S and
López-Nevot MA: Mutation analysis of genes that control the G1/S
cell cycle in melanoma: TP53, CDKN1A, CDKN2A, and CDKN2B. BMC
Cancer. 5:362005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Arnaldi LA, Borra RC, Maciel RM and
Cerutti JM: Gene expression profiles reveal that DCN, DIO1, and
DIO2 are underexpressed in benign and malignant thyroid tumors.
Thyroid. 15:210–221. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kroll TG, Sarraf P, Pecciarini L, et al:
PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma
[corrected]. Science. 289:1357–1360. 2000. View Article : Google Scholar : PubMed/NCBI
|
39
|
Antico Arciuch VG, Russo MA, Dima M, et
al: Thyrocyte-specific inactivation of p53 and Pten results in
anaplastic thyroid carcinomas faithfully recapitulating human
tumors. Oncotarget. 2:1109–1126. 2011.PubMed/NCBI
|