1
|
Moorhead JF, Chan MK, El-Nahas M and
Varghese Z: Lipid nephrotoxicity in chronic progressive glomerular
and tubulo-interstitial disease. Lancet. 2:1309–1311. 1982.
View Article : Google Scholar : PubMed/NCBI
|
2
|
uan XZ, Varghese Z and Moorhead JF: An
update on the lipid nephrotoxicity hypothesis. Nat Rev Nephrol.
5:713–721. 2009. View Article : Google Scholar
|
3
|
Kim E, Tolhurst AT, Qin LY, Chen XY,
Febbraio M and Cho S: CD36/fatty acid translocase, an inflammatory
mediator, is involved in hyperlipidemia-induced exacerbation in
ischemic brain injury. J Neurosci. 28:4661–4670. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sultan A, Strodthoff D, Robertson AK, et
al: T cell-mediated inflammation in adipose tissue does not cause
insulin resistance in hyperlipidemic mice. Circ Res. 104:961–968.
2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Perez de Lema G, Maier H, Nieto E, et al:
Chemokine expression precedes inflammatory cell infiltration and
chemokine receptor and cytokine expression during the initiation of
murine lupus nephritis. J Am Soc Nephrol. 12:1369–1382.
2001.PubMed/NCBI
|
6
|
Anders HJ, Belemezova E, Eis V, et al:
Late onset of treatment with a chemokine receptor CCR1 antagonist
prevents progression of lupus nephritis in MRL-Fas(lpr) mice. J Am
Soc Nephrol. 15:1504–1513. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Rovin BH, Rumancik M, Tan L and Dickerson
J: Glomerular expression of monocyte chemoattractant protein-1 in
experimental and human glomerulonephritis. Lab Invest. 71:536–542.
1994.PubMed/NCBI
|
8
|
Zoja C, Liu XH, Donadelli R, et al: Renal
expression of monocyte chemoattractant protein-1 in lupus
autoimmune mice. J Am Soc Nephrol. 8:720–729. 1997.PubMed/NCBI
|
9
|
Tesch GH, Schwarting A, Kinoshita K, Lan
HY, Rollins BJ and Kelley VR: Monocyte chemoattractant protein-1
promotes macrophage-mediated tubular injury, but not glomerular
injury, in nephrotoxic serum nephritis. J Clin Invest. 103:73–80.
1999. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Chow F, Ozols E, Nikolic-Paterson DJ,
Atkins RC and Tesch GH: Macrophages in mouse type 2 diabetic
nephropathy: correlation with diabetic state and progressive renal
injury. Kidney Int. 65:116–128. 2004. View Article : Google Scholar
|
11
|
He X, Schoeb TR, Panoskaltsis-Mortari A,
et al: Deficiency of P-selectin or P-selectin glycoprotein ligand-1
leads to accelerated development of glomerulonephritis and
increased expression of CC chemokine ligand 2 in lupus-prone mice.
J Immunol. 177:8748–8756. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Tashiro K, Koyanagi I, Saitoh A, et al:
Urinary levels of monocyte chemoattractant protein-1 (MCP-1) and
interleukin-8 (IL-8), and renal injuries in patients with type 2
diabetic nephropathy. J Clin Lab Anal. 16:1–4. 2002. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kanamori H, Matsubara T, Mima A, et al:
Inhibition of MCP-1/CCR2 pathway ameliorates the development of
diabetic nephropathy. Biochem Biophys Res Commun. 360:772–777.
2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Chow FY, Nikolic-Paterson DJ, Ozols E,
Atkins RC, Rollin BJ and Tesch GH: Monocyte chemoattractant
protein-1 promotes the development of diabetic renal injury in
streptozotocin-treated mice. Kidney Int. 69:73–80. 2006. View Article : Google Scholar
|
15
|
Garibotto G, Sofia A, Balbi M, et al:
Kidney and splanchnic handling of interleukin-6 in humans.
Cytokine. 37:51–54. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Li C, Lin G and Zuo Z: Pharmacological
effects and pharmacokinetics properties of Radix scutellariae and
its bioactive flavones. Biopharm Drug Dispos. 32:427–445. 2011.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Baylor NW, Fu T, Yan YD and Ruscetti FW:
Inhibition of human T cell leukemia virus by the plant flavonoid
baicalin (7-glucuronic acid, 5,6-dihydroxyflavone). J Infect Dis.
165:433–437. 1992. View Article : Google Scholar : PubMed/NCBI
|
18
|
Li BQ, Fu T, Dongyan Y, Mikovits JA,
Ruscetti FW and Wang JM: Flavonoid baicalin inhibits HIV-1
infection at the level of viral entry. Biochem Biophys Res Commun.
276:534–538. 2000. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zeng Y, Song C, Ding X, Ji X, Yi L and Zhu
K: Baicalin reduces the severity of experimental autoimmune
encephalomyelitis. Braz J Med Biol Res. 40:1003–1010. 2007.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang XP, Tian H, Wu DJ, et al:
Pathological changes in multiple organs of rats with severe acute
pancreatitis treated by baicalin and octreotide. Hepatobiliary
Pancreat Dis Int. 8:85–92. 2009.PubMed/NCBI
|
21
|
Zhang X, Tian H, Wu C, et al: Effect of
baicalin on inflammatory mediator levels and microcirculation
disturbance in rats with severe acute pancreatitis. Pancreas.
38:732–738. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zwai M, Chen R, Li Z, et al: Deletion of
angiotensin II type 2 receptor exaggerated atherosclerosis in
apolipoprotein E-null mice. Circulation. 112:1636–1643. 2005.
View Article : Google Scholar
|
23
|
Kim DH, Kim HK, Park S, et al: Short-term
feeding of baicalin inhibits age-associated NF-kappaB activation.
Mech Ageing Dev. 127:719–725. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang Y, Gao Z, Liu J and Xu Z: Protective
effects of baicalin and quercetin on an iron-overloaded mouse:
comparison of liver, kidney and heart tissues. Nat Prod Res.
25:1150–1160. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhang XP, Tian H, Lai YH, et al:
Protective effects and mechanisms of Baicalin and octreotide on
renal injury of rats with severe acute pancreatitis. World J
Gastroenterol. 13:5079–5089. 2007.PubMed/NCBI
|
26
|
Lv SS, Liu G, Wang JP, et al: Mesenchymal
stem cells transplantation ameliorates glomerular injury in
streptozotocin-induced diabetic nephropathy in rats via inhibiting
macrophage infiltration. Int Immunopharmacol. 17:275–282. 2013.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Tesch GH, Maifert S, Schwarting A, Rollins
BJ and Kelley VR: Monocyte chemoattractant protein 1-dependent
leukocytic infiltrates are responsible for autoimmune disease in
MRL-Fas(lpr) mice. J Exp Med. 190:1813–1824. 1999. View Article : Google Scholar : PubMed/NCBI
|
28
|
Fu CP, Lee IT, Sheu WH, et al: The levels
of circulating and urinary monocyte chemoattractant protein-1 are
associated with chronic renal injury in obese men. Clin Chim Acta.
413:1647–1651. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wu T, Xie C, Wang HW, et al: Elevated
urinary VCAM-1, P-selectin, soluble TNF receptor-1, and CXC
chemokine ligand 16 in multiple murine lupus strains and human
lupus nephritis. J Immunol. 179:7166–7175. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bolton CH, Downs LG, Victory JG, et al:
Endothelial dysfunction in chronic renal failure: roles of
lipoprotein oxidation and pro-inflammatory cytokines. Nephrol Dial
Transplant. 16:1189–1197. 2001. View Article : Google Scholar : PubMed/NCBI
|
31
|
Cottone S, Mule G, Amato F, et al:
Amplified biochemical activation of endothelial function in
hypertension associated with moderate to severe renal failure. J
Nephrol. 15:643–648. 2002.PubMed/NCBI
|
32
|
Zhu L, Shi S, Liu L, Lv J and Zhang H:
Increased plasma sVCAM-1 is associated with severity in IgA
nephropathy. BMC Nephrol. 14:212013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Nelson CL, Karschimkus CS, Dragicevic G,
et al: Systemic and vascular inflammation is elevated in early IgA
and type 1 diabetic nephropathies and relates to vascular disease
risk factors and renal function. Nephrol Dial Transplant.
20:2420–2426. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Bruneval P, Bariety J, Belair MF, Mandet
C, Heudes D and Nicoletti A: Mesangial expansion associated with
glomerular endothelial cell activation and macrophage recruitment
is developing in hyperlipidaemic apoE null mice. Nephrol Dial
Transplant. 17:2099–2107. 2002. View Article : Google Scholar : PubMed/NCBI
|