1
|
Barclay JL, Tsang AH and Oster H:
Interaction of central and peripheral Clocks in physiological
regulation. Prog Brain Res. 199:163–181. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Eckel-Mahan K and Sassone-Corsi P:
Metabolism and the circadian Clock converge. Physiol Rev.
93:107–135. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Mazzoccoli G, Pazienza V and Vinciguerra
M: Clock genes and Clock-controlled genes in the regulation of
metabolic rhythms. Chronobiol Int. 29:227–251. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Isojima Y, Okumura N and Nagai K:
Molecular mechanism of mammalian circadian Clock. J Biochem.
134:777–784. 2003. View Article : Google Scholar
|
5
|
Eide EJ and Virshup DM: Casein kinase I:
another cog in the circadian Clockworks. Chronobiol Int.
18:389–398. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Greene MW: Circadian rhythms and tumor
growth. Cancer Lett. 318:115–123. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Savvidis C and Koutsilieris M: Circadian
rhythm disruption in cancer biology. Mol Med. 18:1249–1260. 2012.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Brudnowska J and Peplonska B: Night shift
work and cancer risk: a literature review. Med Pr. 62:323–338.
2011.(In Polish).
|
9
|
Leonardi GC, Rapisarda V, Marconi A, et
al: Correlation of the risk of breast cancer and disruption of the
circadian rhythm (Review). Oncol Rep. 28:418–428. 2012.PubMed/NCBI
|
10
|
Relles D, Sendecki J, Chipitsyna G, Hyslop
T, Yeo CJ and Arafat HA: Circadian gene expression and
clinicopathologic correlates in pancreatic cancer. J Gastrointest
Surg. 17:443–450. 2013. View Article : Google Scholar
|
11
|
Lin YM, Chang JH, Yeh KT, et al:
Disturbance of circadian gene expression in hepatocellular
carcinoma. Mol Carcinog. 47:925–933. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Aravalli RN, Cressman EN and Steer CJ:
Cellular and molecular mechanisms of hepatocellular carcinoma: an
update. Arch Toxicol. 87:227–247. 2013. View Article : Google Scholar
|
13
|
Yang Y, Sun M, Wang L and Jiao B: HIFs,
angiogenesis, and cancer. J Cell Biochem. 114:967–974. 2013.
View Article : Google Scholar
|
14
|
Tang CM and Yu J: Hypoxia-inducible
factor-1 as a therapeutic target in cancer. J Gastroenterol
Hepatol. 28:401–405. 2013. View Article : Google Scholar
|
15
|
Egg M, Köblitz L, Hirayama J, et al:
Linking oxygen to time: the bidirectional interaction between the
hypoxic signaling pathway and the circadian Clock. Chronobiol Int.
30:510–529. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Bradford MM: A rapid and sensitive method
for the quantitation of microgram quantities of protein utilizing
the principle of protein-dye binding. Analytical biochemistry.
72:248–254. 1976. View Article : Google Scholar : PubMed/NCBI
|
17
|
He YW, Wang HS, Zeng J, et al: Sodium
butyrate inhibits interferon-gamma induced indoleamine
2,3-dioxygenase expression via STAT1 in nasopharyngeal carcinoma
cells. Life Sci. 93:509–515. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Fang X, Dong W, Thornton C, Scheffler B
and Willett KL: Benzo(a)pyrene induced glycine N-methyltransferase
messenger RNA expression in Fundulus heteroclitus embryos. Mar
Environ Res. 69(Suppl): S74–S76. 2010. View Article : Google Scholar
|
19
|
Fang X, Thornton C, Scheffler BE and
Willett KL: Benzo[a]pyrene decreases global and gene specific DNA
methylation during zebrafish development. Environ Toxicol
Pharmacol. 36:40–50. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Buscariollo DL, Fang X, Greenwood V, Xue
H, Rivkees SA and Wendler CC: Embryonic caffeine exposure acts via
A1 adenosine receptors to alter adult cardiac function and DNA
methylation in mice. PLoS One. 9:e875472014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Menegaux F, Truong T, Anger A, et al:
Night work and breast cancer: a population-based case-control study
in France (the CECILE study). Int J Cancer. 132:924–931. 2013.
View Article : Google Scholar
|
22
|
Lahti T, Merikanto I and Partonen T:
Circadian Clock disruptions and the risk of cancer. Ann Med.
44:847–853. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chen R, Yang K, Zhao NB, et al: Abnormal
expression of PER1 circadian-Clock gene in oral squamous cell
carcinoma. Onco Targets Ther. 5:403–407. 2012.PubMed/NCBI
|
24
|
Mazzoccoli G, Panza A, Valvano MR, et al:
Clock gene expression levels and relationship with clinical and
pathological features in colorectal cancer patients. Chronobiol
Int. 28:841–851. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Krugluger W, Brandstaetter A, Kállay E, et
al: Regulation of genes of the circadian Clock in human colon
cancer: reduced period-1 and dihydropyrimidine dehydrogenase
transcription correlates in high-grade tumors. Cancer Res.
67:7917–7922. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang X, Yan D, Teng M, et al: Reduced
expression of PER3 is associated with incidence and development of
colon cancer. Ann Surg Oncol. 19:3081–3088. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Oshima T, Takenoshita S, Akaike M, et al:
Expression of circadian genes correlates with liver metastasis and
outcomes in colorectal cancer. Oncol Rep. 25:1439–1446. 2011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang Y, Hua L, Lu C and Chen Z: Expression
of circadian Clock gene human Period2 (hPer2) in human colorectal
carcinoma. World J Surg Oncol. 9:1662011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Canaple L, Kakizawa T and Laudet V: The
days and nights of cancer cells. Cancer Res. 63:7545–7552.
2003.PubMed/NCBI
|
30
|
Schibler U: The daily timing of gene
expression and physiology in mammals. Dialogues Clin Neurosci.
9:257–272. 2007.PubMed/NCBI
|
31
|
Filipski E, Subramanian P, Carrière J,
Guettier C, Barbason H and Lévi F: Circadian disruption accelerates
liver carcinogenesis in mice. Mutat Res. 680:95–105. 2009.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Logan RW, Zhang C, Murugan S, et al:
Chronic shift-lag alters the circadian Clock of NK cells and
promotes lung cancer growth in rats. J Immunol. 188:2583–2591.
2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yang SL, Yu C, Jiang JX, Liu LP, Fang X
and Wu C: Hepatitis B virus X protein disrupts the balance of the
expression of circadian rhythm genes in hepatocellular carcinoma.
Oncology letters. 8:2715–2720. 2014.PubMed/NCBI
|
34
|
Kelleher FC, Rao A and Maguire A:
Circadian molecular Clocks and cancer. Cancer Lett. 342:9–18. 2013.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Haase VH: The VHL tumor suppressor: master
regulator of HIF. Curr Pharm Des. 15:3895–3903. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Keith B, Johnson RS and Simon MC: HIF1α
and HIF2α: sibling rivalry in hypoxic tumour growth and
progression. Nat Rev Cancer. 12:9–22. 2012.
|
37
|
Loboda A, Jozkowicz A and Dulak J: HIF-1
versus HIF-2 - is one more important than the other? Vascul
Pharmacol. 56:245–251. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hsu CM, Lin PM, Lai CC, Lin HC, Lin SF and
Yang MY: PER1 and Clock are potential circulating biomarkers for
head and neck squamous cell carcinoma. Head Neck. 36:1018–1026.
2013. View Article : Google Scholar
|
39
|
Yang SL, Liu LP, Jiang JX, Xiong ZF, He QJ
and Wu C: The correlation of expression levels of HIF-1α and HIF-2α
in hepatocellular carcinoma with capsular invasion, portal vein
tumor thrombi and patients’ clinical outcome. Jpn J Clin Oncol.
44:159–167. 2014. View Article : Google Scholar : PubMed/NCBI
|