1
|
Oliva MS, Schottman T and Gulati M:
Turning the tide of corneal blindness. Indian J Ophthalmo.
160:423–427. 2012. View Article : Google Scholar
|
2
|
Streilein JW: New thoughts on the
immunology of corneal transplantation. Eye. 17:943–948. 2003.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Williams KA, Lowe M, Bartlett C, Kelly TL
and Coster DJ: Risk factors for human corneal graft failure within
the Australian corneal graft registry. Transplantation.
86:1720–1724. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Maguire MG, Stark WJ, Gottsch JD, et al:
Risk factors for corneal graft failure and rejection in the
collaborative corneal transplantation studies. Collaborative
Corneal Transplantation Studies Research Group. Ophthalmology.
101:1536–1547. 1994. View Article : Google Scholar : PubMed/NCBI
|
5
|
Panda A, Vanathi M, Kumar A, Dash Y and
Priya S: Corneal graft rejection. Surv Ophthalmol. 52:375–396.
2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Niederkorn JY: Immune mechanisms of
corneal allograft rejection. Curr Eye Res. 32:1005–1016. 2007.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Chauhan SK, Saban DR, Lee HK and Dana R:
Levels of Foxp3 in regulatory T cells reflect their functional
status in transplantation. J Immunol. 182:148–153. 2009. View Article : Google Scholar :
|
8
|
Cunnusamy K, Paunicka K, Reyes N, et al:
Two different regulatory T cell populations that promote corneal
allograft survival. Invest Ophthalmol Vis Sci. 51:6566–6574. 2010.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Inoue K, Kimura C, Amano S, et al:
Long-term outcome of systemic cyclosporine treatment following
penetrating keratoplasty. Jpn J Ophthalmol. 45:378–382. 2001.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Shimazaki J, Den S, Omoto M, et al:
Prospective, randomized study of the efficacy of systemic
cyclosporine in high-risk corneal transplantation. Am J Ophthalmol.
152:33–39. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang ZY, Zhang Z, Zug C, et al: AUY954, a
selective S1P1 modulator, prevents experimental autoimmune
neuritis. J Neuroimmunol. 216:59–65. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hanessian S, Charron G, Billich A and
Guerini D: Constrained azacyclic analogues of the immunomodulatory
agent FTY720 as molecular probes for sphingosine 1-phosphate
receptors. Bioorg Med Chem Lett. 17:491–494. 2007. View Article : Google Scholar
|
13
|
Brinkmann V, Davis MD, Heise CE, et al:
The immune modulator FTY720 targets sphingosine 1-phosphate
receptors. J Biol Chem. 277:21453–21457. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Pan S, Mi Y, Pally C, et al: A
monoselective sphingosine-1-phosphate receptor-1 agonist prevents
allograft rejection in a stringent rat heart transplantation model.
Chem Biol. 13:1227–1234. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Sedláková K, Muckersie E, Robertson M,
Filipec M and Forrester JV: FTY720 in corneal concordant
xenotransplantation. Transplantation. 79:297–303. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Mayer K, Birnbaum F, Reinhard T, et al:
FTY720 prolongs clear corneal allograft survival with a
differential effect on different lymphocyte populations. Br J
Ophthalmol. 88:915–919. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang EP, Müller A, Ignatius R and
Hoffmann F: Significant prolongation of orthotopic corneal-graft
survival in FTY720-treated mice. Transplantation. 76:1511–1513.
2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Cohen JA, Barkhof F, Comi G, et al: Oral
fingolimod or intramuscular interferon for relapsing multiple
sclerosis. N Engl J Med. 362:402–415. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang EP, Schrunder S and Hoffmann F:
Orthotopic corneal transplantation in the mouse: a new surgical
technique with minimal endothelial cell loss. Graefes Arch Clin Exp
Ophthalmol. 234:714–719. 1996. View Article : Google Scholar : PubMed/NCBI
|
20
|
Brinkmann V, Cyster JG and Hla T: FYT720:
sphingosine 1-phosphate receptor-1 in the control of lymphocyte
egress and endothelial barrier function. Am J Transplant.
4:1019–1025. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang JL, Sun DJ, Hou CM, et al: CD3 mAb
treatment ameliorated the severity of the cGVHD-induced lupus
nephritis in mice by up-regulation of Foxp3+ regulatory T cells in
the target tissue: kidney. Transpl Immunol. 24:17–25. 2010.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Xie Y, Sun HX and Li D: Platycodin D is a
potent adjuvant of specific cellular and humoral immune responses
against recombinant hepatitis B antigen. Vaccine. 27:757–764. 2009.
View Article : Google Scholar
|
23
|
Küchle M, Cursiefen C, Nguyen NX, et al:
Risk factors for corneal allograft rejection: intermediate results
of a prospective normal-risk keratoplasty study. Graefes Arch Clin
Exp Ophthalmol. 240:580–584. 2002. View Article : Google Scholar : PubMed/NCBI
|
24
|
Xie L, Shi W, Wang Z, Bei J and Wang S:
Prolongation of corneal allograft survival using cyclosporine in a
polylactide-co-glycolide polymer. Cornea. 20:748–752. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Bourges JL, Lallemand F, Agla E, et al:
Evaluation of a topical cyclosporine A prodrug on corneal graft
rejection in rats. Mol Vis. 12:1461–1466. 2006.PubMed/NCBI
|
26
|
Sinha R, Jhanji V, Verma K, et al:
Efficacy of topical cyclosporine A 2% in prevention of graft
rejection in high-risk keratoplasty: a randomized controlled trial.
Graefes Arch Clin Exp Ophthalmol. 248:1167–1172. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ziaei M and Manzouri B: Topical
cyclosporine in corneal transplantation. Cornea. 29:Oct
29–2014.(Epub ahead of print).
|
28
|
Unal M and Yucel I: Evaluation of topical
ciclosporin 0.05% for prevention of rejection in high-risk corneal
grafts. Br J Ophthalmol. 92:1411–1414. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Poon A, Constantinou M, Lamoureux E and
Taylor HR: Topical Cyclosporin A in the treatment of acute graft
rejection: a randomized controlled trial. Clin Experiment
Ophthalmol. 36:415–421. 2008.PubMed/NCBI
|
30
|
Alalwani H, Omer Saleh B, Rocher N, et al:
Advantages and limits of multiple grafts (third keratoplasty) under
local cyclosporin 2%. J Fr Ophtalmol. 33:710–714. 2010.(In French).
View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang GY, Yang Y, Li H, et al: Rapamycin
combined with donor immature dendritic cells promotes liver
allograft survival in association with CD4(+) CD25(+) Foxp3(+)
regulatory T cell expansion. Hepatol Res. 42:192–202. 2012.
View Article : Google Scholar
|
32
|
Lu L, Ma J, Wang X, et al: Synergistic
effect of TGF-beta superfamily members on the induction of
Foxp3+ Treg. Eur J Immunol. 40:142–152. 2010. View Article : Google Scholar :
|
33
|
Hofmann U, Hu K, Walter F, et al:
Pharmacological pre- and post-conditioning with the
sphingosine-1-phosphate receptor modulator FTY720 after myocardial
ischaemia-reperfusion. Br J Pharmacol. 160:1243–1251. 2010.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Stanojlovic S, Schlickeiser S, Appelt C,
et al: Influence of combined treatment of low dose rapamycin and
cyclosporin A on corneal allograft survival. Graefes Arch Clin Exp
Ophthalmol. 248:1447–1456. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Matsuoka K, Kim HT, McDonough S, et al:
Altered regulatory T cell homeostasis in patients with
CD4+ lymphopenia following allogeneic hematopoietic stem
cell transplantation. J Clin Invest. 120:1479–1493. 2010.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Schneider MA, Meingassner JG, Lipp M,
Moore HD and Rot A: CCR7 is required for the in vivo function of
CD4+CD25+ regulatory T cells. J Exp Med.
204:735–745. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Commodaro AG, Peron JP, Lopes CT, et al:
Evaluation of experimental autoimmune uveitis in mice treated with
FTY720. Invest Ophthalmol Vis Sci. 51:2568–74. 2010. View Article : Google Scholar
|
38
|
Sehrawat S and Rouse BT: Anti-inflammatory
effects of FTY720 against viral-induced immunopathology: role of
drug-induced conversion of T cells to become Foxp3+
regulators. J Immunol. 180:7636–7647. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Bocian K, Borysowski J, Wierzbicki P, et
al: Rapamycin, unlike cyclosporine A, enhances suppressive
functions of in vitro-induced CD4+CD25+
Tregs. Nephrol Dial Transplant. 25:710–717. 2010. View Article : Google Scholar
|
40
|
Zeiser R, Nguyen VH, Beilhack A, et al:
Inhibition of CD4+CD25+ regulatory T-cell
function by calcineurin-dependent interleukin-2 production. Blood.
108:390–399. 2006. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yamagami S, Dana MR and Tsuru T: Draining
lymph nodes play an essential role in alloimmunity generated in
response to high-risk corneal transplantation. Cornea. 21:405–409.
2002. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kobayashi T, Momoi Y and Iwasaki T:
Cyclosporine A inhibits the mRNA expressions of IL-2, IL-4 and
IFN-gamma, but not TNF-alpha, in canine mononuclear cells. J Vet
Med Sci. 69:887–892. 2007. View Article : Google Scholar : PubMed/NCBI
|
43
|
Li J, Ballim D, Rodríguez M, et al: The
anti-proliferative function of the TGF-β1 signalling
pathwayinvolves the repression of the oncogenic TBX2 by its
homologue TBX3. J Biol Chem. Nov 4–2014.(Epub ahead of print).
|