1
|
Zhu YJ, Liu SY, Wang H, Wei P and Ding XP:
The prevalence of azoospermia factor microdeletion on the Y
chromosome of Chinese infertile men detected by multi-analyte
suspension array technology. Asian J Androl. 10:873–881. 2008.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Evenson DP, Larson KJ and Jost LK: Sperm
chromatin structure assay: its clinical use for detecting sperm DNA
fragmentation in male infertility and comparisons with other
techniques. J Androl. 23:25–43. 2002.PubMed/NCBI
|
3
|
Agarwal A and Said TM: Role of sperm
chromatin abnormalities and DNA damage in male infertility. Hum
Reprod Update. 9:331–345. 2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bartel DP: MicroRNAs: genomics,
biogenesis, mechanism and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Stark A, Bushati N, Jan CH, Kheradpour P,
Hodges E, Brennecke J and Kellis M: A single Hox locus in
Drosophila produces functional microRNAs from opposite DNA strands.
Genes Dev. 22:8–13. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Papaioannou MD and Nef S: microRNAs in the
testis: Building up male fertility. J Androl. 31:26–33. 2010.
View Article : Google Scholar
|
7
|
Hayashi K, Chava de Sousa Lopes SM, Kaneda
M, Tang F, Hanjkova P, Lao K, Surani MA, et al: MicroRNA biogenesis
is required for mouse primordial germ cell development and
spermatogenesis. PLoS One. 3:e17382008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lian J, Tian H, Liu L, Zhang XS, Li WQ,
Deng YM and Sun F: Downregulation of microRNA-383 is associated
with male infertility and promotes testicular embryonal carcinoma
cell proliferation by targeting IRF1. Cell Death Dis. 1:e942010.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Voorhoeve PM, le Sage C, Schrier M, Gillis
AJ, Stoop N, Nagel R, Agami R, et al: A genetic screen implicates
miRNA-372 and miRNA-373 as oncogenes in testicular germ cell
tumors. Cell. 124:1169–1181. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Xu N, Papagiannakopoulos T, Pan G, Thomson
JA and Kosik KS: MicroRNA-145 regulates OCT4, SOX2 and KLF4 and
represses pluripotency in hum an embryonic stem cell. Cell.
137:647–658. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sachdeva M, Zhu S, Wu F, Walia V, Kumar S,
Elble R, Watabe K and Mo YY: p53 represses c-Myc through induction
of the tumor suppressor miR-145. Proc Natl Acad Sci USA.
106:3207–3212. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chiyomaru T, Enokida H, Tatarano S,
Kawahara K, Uchiada Y, Nishiyama K, Fujimura L, Kikkawa N, Seki N
and Nakagawa M: miR-145 and miR-133a function as tumour suppressors
and directly regulate FSCN1 expression in bladder cancer. Br J
Cancer. 102:883–891. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lian J, Zhang X, Tian H, Liang N, Wang Y,
Liang CZ, Li X and Sun F: Altered microRNA expression in patients
with non-obstructive azoospermia. Reprod Biol Endocrinol. 7:132009.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Lagos-Quintana M, Rauhut R, Lendeckel W
and Tuschl T: Identification of novel genes coding for small
expressed RNAs. Science. 294:853–858. 2001. View Article : Google Scholar : PubMed/NCBI
|
15
|
Michael MZ, O’Connor SM, van Holst
Pellekaan NG, Young GP and James RJ: Reduced accumulation of
specific MicroRNAs in colorectal neoplasia1. Mol Cancer Res.
1:882–891. 2003.PubMed/NCBI
|
16
|
Landgraf P, Rusu M, Sheridan R, Sewer A,
Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M,
et al: A mammalian microRNA expression atlas based on small RNA
library sequencing. Cell. 129:1401–1414. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Rockett JC, Patrizio P, Schmid JE, Hecht
NB and Dix DJ: Gene expression patterns associated with infertility
in humans and rodent models. Mutat Res. 549:225–240. 2004.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Lee VM and Andrews PW: Differentiation of
NTERA-2 clonal human embryonal carcinoma cells into neurons
involves the induction of all three neurofilament proteins. J
Neurosci. 6:514–521. 1986.PubMed/NCBI
|
19
|
Kumi-Diaka J, Hassanhi M, Brown J,
Merchant K, Garcia C and Jimenez W: CytoregR inhibits growth and
proliferation of human adenocarcinoma cells via induction of
apoptosis. J Carcinog. 5:12006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Griffths-Jones S, Grocock RJ, van Dongen
S, Bateman A and Enright AJ: miRBase: microRNA sequences, targets
and gene nomenclature. Nucleic Acids Res. 34:140–144. 2006.
View Article : Google Scholar
|
21
|
Lewis BP, Shih IH, Jones-Rhoades MW,
Bartel DP and Burge CB: Prediction of mammalian microRNA targets.
Cell. 115:787–798. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Takamizawa J, Konishi H, Yanagisawa K,
Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y,
Mitsudomi T and Takahashi T: Reduced expression of the let-7
microRNAs in human lung cancers in association with shortened
postoperative survival. Cancer Res. 64:3753–3756. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cho WC, Chow AS and Au JS: Restoration of
tumour suppressor hsa-miR-145 inhibits cancer cell growth in lung
adenocarcinoma patients with epidermal growth factor receptor
mutation. Eur J Cancer. 45:2197–2206. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Jung YH, Gupta MK, Shin JY, Uhm SJ and Lee
HT: MicroRNA signature in testes-derived male germ-line stem cells.
Mol Hum Reprod. 16:804–810. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Cheng Y, Liu X, Yang J, Lin Y, Xu DZ, Lu
Q, Deitch EA, Huo YQ, Delphin ES and Zhang C: MicroRNA-145, a novel
smooth muscle cell phenotypic marker and modulator, controls
vascular neointimal lesion formation. Circ Res. 105:158–166. 2009.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Vamsi K: Gangaraju and Haifan Lin:
MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Bio.
10:116–125. 2009. View
Article : Google Scholar
|
27
|
Lakshmipathy U and Hart RP: Concise
review: MicroRNA expression in multipotent mesenchymal stromal
cells. Stem Cells. 26:356–363. 2008. View Article : Google Scholar
|
28
|
Lin WW, Lamb DJ, Lipshultz LI and Kim ED:
Demonstration of testicular apoptosis in human male infertility
states using a DNA laddering technique. Int Urol Nephrol.
31:361–370. 1999. View Article : Google Scholar
|
29
|
Steger K, Aleithe I, Behre H and Bergmann
M: The proliferation of spermatogonia in normal and pathological
human seminiferous epithelium: an immunohistochemical study using
monoclonal antibodies against Ki-67 protein and proliferating cell
nuclear antigen. Mol Hum Reprod. 4:227–233. 1998. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bar-Shira Maymon B, Yogev L, Yavetz H,
Lifschitz-Mercer B, Schreiber L, Kleiman SE, Botchan A, Hauser R
and Paz G: Spermatogonial proliferation patterns in men with
azoospermia of different etiologies. Fertil Steril. 80:1175–1180.
2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gonsalves J, Sun F, Schlegel PN, Turek PJ,
Hopps CV, Greene C, Martin RH and Pera RA: Defective recombination
in infertile men. Hum Mol Genet. 13:2875–2883. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Schumacher V, Gueler B, Looijenga LH,
Becker JU, Amann K, Engers R, Dotsch J, Stoop H, Schulz W and
Royer-Pokora B: Characteristics of testicular dysgenesis syndrome
and decreased expression of SRY and SOX9 in frasier syndrome
regulation of the orphan nuclear receptor steroidogenic factor 1 by
sox proteins. Mol Reprod Dev. 75:1484–1494. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yang B, Guo H, Zhang Y, Chen L, Ying D and
Dong S: MicroRNA-145 regulates chondrogenic differentiation of
mesenchymal stem cells by targeting SOX9. PLoS One. 6:e216792011.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Bandrés E, Cubedo E, Agirre X, Malumbres
R, Zarate R, Ramirez N, Abajo A, Navarro A, Moreno I, Monzo M and
Garcia-Foncillas J: Identification by real-time PCR of 13 mature
microRNAs differentially expressed in colorectal cancer and
non-tumoral tissues. Mol Cancer. 5:292006. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sempere LF, Christensen M, Silahtaroglu A,
Bak M, Heath CV, Schwartz G, Wells W, Kauppinen S and Cole CN:
Altered microRNA expression confined to specific epithelial cell
subpopulations in breast cancer. Cancer Res. 67:11612–11620. 2007.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Slaby O, Svoboda M, Fabian P, Smerdova T,
Knoflickova D, Bednarikova M, Nenutil R and Vyzula R: Altered
expression of miR-21, miR-31, miR-143 and miR-145 is related to
clinicopathologic features of colorectal cancer. Oncology.
72:397–402. 2007. View Article : Google Scholar
|
37
|
Szafranska AE, Davison TS, John J, Cannon
T, Sipos B, Maghnouj A, Labourier E and Hahn SA: MicroRNA
expression alTERAtions are linked to tumorigenesis and
non-neoplastic processes in pancreatic ductal adenocarcinoma.
Oncogene. 26:4442–4452. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ozen M, Creighton CJ, Ozdemir M and
Ittmann M: Widespread deregulation of microRNA expression in human
prostate cancer. Oncogene. 27:1788–1793. 2008. View Article : Google Scholar
|
39
|
Wang X, Tang S, Le SY, Lu R, Rader JS,
Meyers C and Zheng ZM: Aberrant expression of oncogenic and
tumor-suppressive microRNAs in cervical cancer is required for
cancer cell growth. PLoS One. 3:e25572008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Shi B, Sepp-Lorenzino L, Prisco M, Linsley
P, deAngelis T and Baserga R: MicroRNA-145 targets the insulin
receptor substrate-1 and inhibits the growth of colon cancer cells.
J Biol Chem. 282:32582–32590. 2007. View Article : Google Scholar : PubMed/NCBI
|
41
|
Tay Y, Zhang J, Thomson AM, Lim B and
Rigoutsos I: MicroRNAs to Nanog, Oct4 and Sox2 coding regions
modulate embryonic stem cell differentiation. Nature.
455:1124–1128. 2008. View Article : Google Scholar : PubMed/NCBI
|