1
|
Parkin DM: International variation.
Oncogene. 23:6329–6340. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Jemal A, Bray F, Center MM, et al: Global
cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Morse MA and Stoner GD: Cancer
chemoprevention: principles and prospects. Carcinogenesis.
14:1737–1746. 1993. View Article : Google Scholar : PubMed/NCBI
|
4
|
Debatin KM: Apoptosis pathways in cancer
and cancer therapy. Cancer Immunol Immunother. 53:153–159. 2004.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Oltersdorf T, Elmore SW, Shoemaker AR, et
al: An inhibitor of Bcl-2 family proteins induces regression of
solid tumors. Nature. 435:677–681. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Krajewska M, Fenoglio-Preiser CM,
Krajewski S, et al: Immunohistochemical analysis of Bcl-2 family
proteins in adenocarcinomas of the stomach. Am J Pathol.
149:1449–1457. 1996.PubMed/NCBI
|
7
|
Reed JC, Zha H, Aime-Sempe C, Takayama S
and Wang HG: Structure-function analysis of Bcl-2 family proteins:
Regulators of programmed cell death. Adv Exp Med Biol. 406:99–112.
1996. View Article : Google Scholar
|
8
|
Petros AM, Olejniczak ET and Fesik SW:
Structural biology of the Bcl-2 family of proteins. Biochim Biophys
Acta. 1644:83–94. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Marzo I and Naval J: Bcl-2 family members
as molecular targets in cancer therapy. Biochem Pharmacol.
76:939–946. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Huang Z: Small molecule inhibitors of
Bcl-2 function: modulators of apoptosis and promising anticancer
agents. Curr Opin Drug Discov Devel. 3:565–574. 2000.PubMed/NCBI
|
11
|
Wang S, Yang D and Lippman ME: Targeting
Bcl-2 and Bcl-XL with nonpeptidic small-molecule antagonists. Semin
Oncol. 30(5 Suppl 16): 133–142. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Al-Katib AM, Sun Y, Goustin AS, et al: SMI
of Bcl-2 TW-37 is active across a spectrum of B-cell tumors
irrespective of their proliferative and differentiation status. J
Hematol Oncol. 2:82009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Azmi AS and Mohammad RM: Non-peptidic
small molecule inhibitors against Bcl-2 for cancer therapy. J Cell
Physiol. 218:13–21. 2009. View Article : Google Scholar :
|
14
|
Wei MC, Zong WX, Cheng EH, et al:
Proapoptotic BAX and BAK: a requisite gateway to mitochondrial
dysfunction and death. Science. 292:727–730. 2001. View Article : Google Scholar : PubMed/NCBI
|
15
|
Coutinho EM: Gossypol: a contraceptive for
men. Contraception. 65:259–263. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Naik H, Petrylak D, Yagoda A, et al:
Preclinical studies of gossypol in prostate carcinoma. Int J Oncol.
6:209–213. 1995.PubMed/NCBI
|
17
|
Gilbert NE, O’Reilly JE, Chang CJ, Lin YC
and Brueggemeier RW: Antiproliferative activity of gossypol and
gossypolone on human breast cancer cells. Life Sci. 57:61–67. 1995.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Bushunow P, Reidenberg MM, Wasenko J, et
al: Gossypol treatment of recurrent adult malignant gliomas. J
Neurooncol. 43:79–86. 1999. View Article : Google Scholar : PubMed/NCBI
|
19
|
Balakrishnan K, Wierda WG, Keating MJ and
Gandhi V: Gossypol, a BH3 mimetic, induces apoptosis in chronic
lymphocytic leukemia cells. Blood. 112:1971–1980. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Gunassekaran GR, Priya DK, Gayathri R and
Sakthisekaran D: In vitro and in vivo studies on antitumor effects
of gossypol on human stomach adenocarcinoma (AGS) cell line and
MNNG induced experimental gastric cancer. Biochem Biophys Res
Commun. 411:661–666. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Jiang J, Slivova V, Jedinak A and Sliva D:
Gossypol inhibits growth, invasiveness, and angiogenesis in human
prostate cancer cells by modulating NF-κB/AP-1 dependent- and
independent-signaling. Clin Exp Metastasis. 29:165–178. 2012.
View Article : Google Scholar
|
22
|
Baggstrom MQ, Qi Y, Koczywas M, et al: A
phase II study of AT-101 (Gossypol) in chemotherapy-sensitive
recurrent extensive-stage small cell lung cancer. J Thorac Oncol.
6:1757–1760. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wei J, Kitada S, Stebbins JL, et al:
Synthesis and biological evaluation of Apogossypolone derivatives
as pan-active inhibitors of antiapoptotic B-cell
lymphoma/leukemia-2 (Bcl-2) family proteins. J Med Chem.
53:8000–8011. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang XQ, Huang XF, Hu XB, et al:
Apogossypolone, a novel inhibitor of antiapoptotic Bcl-2 family
proteins, induces autophagy of PC-3 and LNCaP prostate cancer cells
in vitro. Asian J Androl. 12:697–708. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhan Y, Jia G, Wu D, Xu Y and Xu L: Design
and synthesis of a gossypol derivative with improved antitumor
activities. Arch Pharm (Weinheim). 342:223–229. 2009. View Article : Google Scholar
|
26
|
Wei J, Rega MF, Kitada S, et al: Synthesis
and evaluation of Apogossypol atropisomers as potential Bcl-xL
antagonists. Cancer Lett. 273:107–113. 2009. View Article : Google Scholar :
|
27
|
Jiang J, Sugimoto Y, Liu S, et al: The
inhibitory effects of gossypol on human prostate cancer cells-PC3
are associated with transforming growth factor beta1 (TGFbeta1)
signal transduction pathway. Anticancer Res. 24:91–100.
2004.PubMed/NCBI
|
28
|
Karaca B, Kucukzeybek Y, Gorumlu G, et al:
Profiling of angiogenic cytokines produced by hormone- and
drug-refractory prostate cancer cell lines, PC-3 and DU-145 before
and after treatment with gossypol. Eur Cytokine Netw. 19:176–184.
2008.PubMed/NCBI
|
29
|
Zhang M, Liu H, Tian Z, et al: Gossypol
induces apoptosis in human PC-3 prostate cancer cells by modulating
caspase-dependent and caspase-independent cell death pathways. Life
Sci. 80:767–774. 2007. View Article : Google Scholar
|
30
|
Reed JC: Apoptosis-based therapies. Nat
Rev Drug Discov. 1:111–121. 2002. View
Article : Google Scholar : PubMed/NCBI
|
31
|
Adams JM and Cory S: The Bcl-2 protein
family: arbiters of cell survival. Science. 281:1322–1326. 1998.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Gross A, McDonnell JM and Korsmeyer SJ:
BCL-2 family members and the mitochondria in apoptosis. Genes Dev.
13:1899–1911. 1999. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang JL, Liu D, Zhang ZJ, et al:
Structure-based discovery of an organic compound that binds Bcl-2
protein and induces apoptosis of tumor cells. Proc Natl Acad Sci
USA. 97:7124–7129. 2000. View Article : Google Scholar : PubMed/NCBI
|
34
|
Degterev A, Lugovskoy A, Cardone M, et al:
Identification of small-molecule inhibitors of interaction between
the BH3 domain and Bcl-xL. Nat Cell Biol. 3:173–182. 2001.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Reed JC: Bcl-2 family proteins. Oncogene.
17:3225–3236. 1998. View Article : Google Scholar
|
36
|
Reed JC: Bcl-2 family proteins: strategies
for overcoming chemoresistance in cancer. Adv Pharmacol.
41:501–532. 1997. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kitada S, Leone M, Sareth S, et al:
Discovery, characterization, and structure-activity relationships
studies of proapoptotic poly-phenols targeting B-cell
lymphocyte/leukemia-2 proteins. J Med Chem. 46:4259–4264. 2003.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang M, Liu H, Guo R, et al: Molecular
mechanism of gossypol-induced cell growth inhibition and cell death
of HT-29 human colon carcinoma cells. Biochem Pharmacol. 66:93–103.
2003. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wang G, Nikolovska-Coleska Z, Yang CY, et
al: Structure-based design of potent small-molecule inhibitors of
anti-apoptotic Bcl-2 proteins. J Med Chem. 49:6139–6142. 2006.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Scopa CD, Vagianos C, Kardamakis D,
Kourelis TG, Kalofonos HP and Tsamandas AC: bcl-2/bax ratio as a
predictive marker for therapeutic response to radiotherapy in
patients with rectal cancer. Appl Immunohistochem Mol Morphol.
9:329–334. 2001. View Article : Google Scholar
|
41
|
Shelley MD, Hartley L, Groundwater PW and
Fish RG: Structure-activity studies on gossypol in tumor cell
lines. Anticancer Drugs. 11:209–216. 2000. View Article : Google Scholar : PubMed/NCBI
|
42
|
Becattini B, Kitada S, Leone M, et al:
Rational design and real time, in-cell detection of the
proapoptotic activity of a novel compound targeting Bcl-X(L). Chem
Biol. 11:389–395. 2004. View Article : Google Scholar : PubMed/NCBI
|
43
|
Kitada S, Kress CL, Krajewska M, Jia L,
Pellecchia M and Reed JC: Bcl-2 antagonist apogossypol (NSC736630)
displays single-agent activity in Bcl-2-transgenic mice and has
superior efficacy with less toxicity compared with gossypol
(NSC19048). Blood. 111:3211–3219. 2008. View Article : Google Scholar : PubMed/NCBI
|
44
|
Coward L, Gorman G, Noker P, et al:
Quantitative determination of apogossypol, a proapoptotic analog of
gossypol, in mouse plasma using LC/MS/MS. J Pharm Biomed Anal.
42:581–586. 2006. View Article : Google Scholar : PubMed/NCBI
|
45
|
Sattler M, Liang H, Nettesheim D, et al:
Structure of Bcl-xL-Bak peptide complex: recognition between
regulators of apoptosis. Science. 275:983–986. 1997. View Article : Google Scholar : PubMed/NCBI
|
46
|
Eldridge MD, Murray CW, Auton TR, Paolini
GV and Mee RP: Empirical scoring functions: I. The development of a
fast empirical scoring function to estimate the binding affinity of
ligands in receptor complexes. J Comput Aided Mol Des. 11:425–445.
1997. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ramjaun AR, Tomlinson S, Eddaoudi A and
Downward J: Upregulation of two BH3-only proteins, Bmf and Bim,
during TGF beta-induced apoptosis. Oncogene. 26:970–981. 2007.
View Article : Google Scholar
|
48
|
Katsumata M, Siegel RM, Louie DC, et al:
Differential effects of Bcl-2 on T and B cells in transgenic mice.
Proc Natl Acad Sci USA. 89:11376–11380. 1992. View Article : Google Scholar : PubMed/NCBI
|