1
|
Weir RE, Gorak-Stolinska P, Floyd S, et
al: Persistence of the immune response induced by BCG vaccination.
BMC Infect Dis. 8:1–9. 2008. View Article : Google Scholar
|
2
|
Gardner GM and Weiser RS: A bacteriophage
for Mycobacterium smegmatis. Proc Soc Exp Biol Med. 66:2051947.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Mycobacteriophage database. http://www.phagesdb.org/.
Accessed 16 May, 2014.
|
4
|
Hatfull GF and Sarkis GJ: DNA sequence:
structure and gene expression of mycobacteriophage L5: a phage
system for mycobacterial genetics. Mol Microbiol. 7:395–405. 1993.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Ford ME, Sarkis GJ, Belanger AE, et al:
Genome structure of mycobacteriophage D29: implications for phage
evolution. J Mol Biol. 279:143–164. 1998. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ford ME, Stenstrom C, Hendrix RW, et al:
Mycobacteriophage TM4: genome structure and gene expression. Tuber
Lung Dis. 79:63–73. 1998. View Article : Google Scholar
|
7
|
Tokunaga T and Sellers M: Infection of
Mycobacterium smegmatis with D29 phage DNA. J Exp Med. 119:139–149.
1964. View Article : Google Scholar : PubMed/NCBI
|
8
|
Raj CV and Rama krishnan T: Transduction
in Mycobacterium smegmatis. Nature. 228:280–281. 1970. View Article : Google Scholar : PubMed/NCBI
|
9
|
Jacobs WR Jr, Snapper SB, Tuckman M and
Bloom BR: Mycobacteriophage vector systems. Rev Infect Dis.
11:S404–S410. 1989. View Article : Google Scholar : PubMed/NCBI
|
10
|
Jacobs WR Jr, Tuckman M and Bloom BR:
Introduction of foreign DNA into mycobacteria using a shuttle
phasmid. Nature. 327:532–535. 1987. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Snapper SB, Lugosi L, Jekkelt A, et al:
Lysogeny and transformation in mycobacteria: stable expression of
foreign genes. Proc Natl Acad Sci USA. 85:6987–6991. 1988.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Lee MH, Pascopella L, Jacobs WR Jr and
Hatfull GF: Site-specific integration of mycobacteriophage L5:
integration-proficient vectors for Mycobacterium smegmatis,
Mycobacterium tuberculosis and bacille Calmette-Guérin. Proc Natl
Acad Sci USA. 88:3111–3115. 1991. View Article : Google Scholar
|
13
|
Bardarov S, Bardarov Jr S Jr, Pavelka Jr
MS Jr, et al: Specialized transduction: an efficient method for
generating marked and unmarked targeted gene disruptions in M.
tuberculosis, M. bovis BCG and M. smegmatis. Microbiology.
148:3007–3017. 2002.PubMed/NCBI
|
14
|
Bardarov S, Kriakov J, Carriere C, et al:
Conditionally replicating mycobacteriophages: a system for
transposon delivery to M. tuberculosis. Proc Natl Acad Sci USA.
94:10961–10966. 1997. View Article : Google Scholar
|
15
|
Sassetti CM, Boyd DH and Rubin EJ: Genes
required for mycobacterial growth defined by high density
mutagenesis. Mol Microbiol. 48:77–84. 2003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Jacobs WR Jr, Barletta RG, Udani R, et al:
Rapid assessment of drug susceptibilities of M. tuberculosis by
means of luciferase reporter phages. Science. 260:819–822. 1993.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Piuri M, Jacobs WR Jr and Hatfull GF:
Fluoromycobacteriophages for rapid, specific and sensitive
antibiotic susceptibility testing of M. tuberculosis. PLoS One.
4:e48702009. View Article : Google Scholar
|
18
|
World Health Organization: Global
tuberculosis control: WHO report 2011. WHO, Geneva: 2011
|
19
|
Pholwat S, Ehdaie B, Foongladda S, Kelly K
and Houpt E: Real-time PCR using mycobacteriophage DNA for rapid
phenotypic drug susceptibility results for Mycobacterium
tuberculosis. J Clin Microbiol. 50:754–761. 2012. View Article : Google Scholar :
|
20
|
Tokunaga T and Sellers MI: Streptomycin
induction of premature lysis of bacteriophage-infected
mycobacteria. J Bacteriol. 89:537–538. 1965.PubMed/NCBI
|
21
|
Phillips LM and Sellers MI: Effects of
ethambutol, actinomycin D and mitomycin C on the biosynthesis of
D29-infected mycobacterium smegmatis. Host-virus relationships in
mycobacterium, nocardia and actinomyces. Juhasz SE and Plummer G:
Charles C. Thomas; Springfield: pp. 80–102. 1970
|
22
|
David HL, Clavel S, Clement F and
Moniz-Pereira J: Effects of antituberculosis and antileprosy drugs
on mycobacteriophage D29 growth. Antimicrob Agents Chemother.
18:357–359. 1980. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wilson SM, al-Suwaidi Z, McNerney R, et
al: Evaluation of a new rapid bacteriophage-based method for the
drug susceptibility testing of Mycobacterium tuberculosis. Nat Med.
3:465–468. 1997. View Article : Google Scholar : PubMed/NCBI
|
24
|
McNerney R, Wilson SM, Sidhu AM, et al:
Inactivation of mycobacteriophage D29 using ferrous ammonium
sulphate as a tool for the detection of viable Mycobacterium
smegmatis and M. tuberculosis. Res Microbiol. 149:487–495. 1998.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Mole RJ and Maskell TW: Phage as a
diagnostic - the use of phage in TB diagnosis. J Chem Technol
Biotechnol. 76:683–688. 2001. View
Article : Google Scholar
|
26
|
Seaman T, Trollip A, Mole R, et al: The
use of a novel phage-based technology as a practical tool for the
diagnosis of tuberculosis in Africa. Afr J Biotechnol. 2:40–45.
2003. View Article : Google Scholar
|
27
|
Marei AM, El-Behedy EM, Mohtady HA and
Afify AF: Evaluation of a rapid bacteriophage-based method for the
detection of Mycobacterium tuberculosis in clinical samples. J Med
Microbiol. 52:331–335. 2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Muzaffar R, Batool S, Aziz F, et al:
Evaluation of the FASTPlaqueTB assay for direct detection of
Mycobacterium tuberculosis in sputum specimens. Int J Tuberc Lung
Dis. 6:635–640. 2002.PubMed/NCBI
|
29
|
Albert H, Trollip AP, Mole RJ, et al:
Rapid indication of multidrug-resistant tuberculosis from liquid
cultures using FASTPlaqueTB-RIF™, a manual phage-based test. Int J
Tuberc Lung Dis. 6:523–528. 2002.PubMed/NCBI
|
30
|
Alcaide F, Galí N, Domínguez J, et al:
Usefulness of a new mycobacteriophage-based technique for rapid
diagnosis of pulmonary tuberculosis. J Clin Microbiol.
41:2867–2871. 2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kalantri S, Pai M, Pascopella L, et al:
Bacteriophage-based tests for the detection of Mycobacterium
tuberculosis in clinical specimens: a systematic review and
meta-analysis. BMC Infect Dis. 5:592005. View Article : Google Scholar
|
32
|
Foundation for Innovative New Diagnostics
(FIND): FIND interrupts demonstration projects using phage-based
assays for detection of rifampin resistance. Geneva, Switzerland:
FIND; 3–October. 2007, http://www.finddiagnostics.org/media/news/index.jsp?year=2007&domain.
Accessed 16 May, 2014.
|
33
|
Sarkis GJ, Jacobs WR Jr and Hatfull GF: L5
luciferase reporter mycobacteriophages: a sensitive tool for the
detection and assay of live mycobacteria. Mol Microbiol.
15:1055–1067. 1995. View Article : Google Scholar : PubMed/NCBI
|
34
|
Pearson RE, Jurgensen S, Sarkis GJ, et al:
Construction of D29 shuttle phasmids and luciferase reporter phages
for detection of mycobacteria. Gene. 183:129–136. 1996. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kumar V, Loganathan P, Sivaramakrishnan G,
et al: Characterization of temperate phage Che12 and construction
of a new tool for diagnosis of tuberculosis. Tuberculosis (Edinb).
88:616–623. 2008. View Article : Google Scholar
|
36
|
Carrière C, Riska PF, Zimhony O, et al:
Conditionally replicating luciferase reporter phages: improved
sensitivity for rapid detection and assessment of drug
susceptibility of Mycobacterium tuberculosis. J Clin Microbiol.
35:3232–3239. 1997.PubMed/NCBI
|
37
|
Riska PF, Jacobs WR Jr, Bloom BR, et al:
Specific identification of M. tuberculosis with the luciferase
reporter mycobacte-riophage: use of
p-nitro-alpha-acetylamino-beta-hydroxy propiophenone. J Clin
Microbiol. 35:3225–3231. 1997.PubMed/NCBI
|
38
|
Dye C, Scheele S, Dolin P, Pathania V and
Raviglione MC: Consensus statement. Global burden of tuberculosis:
Estimated incidence, prevalence, and mortality by country WHO
Global Surveillance and Monitoring Project. JAMA. 282:677–686.
1999. View Article : Google Scholar : PubMed/NCBI
|
39
|
Dusthackeer A, Kumar V, Subbian S, et al:
Construction and evaluation of luciferase reporter phages for the
detection of active and non-replicating tubercle bacilli. J
Microbiol Methods. 73:18–25. 2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Dusthackeer VN, Balaji S, Gomathi NS, et
al: Diagnostic luciferase reporter phage assay for active and
non-replicating persistors to detect tubercle bacilli from sputum
samples. Clin Microbiol Infect. 18:492–496. 2012. View Article : Google Scholar
|
41
|
Banaiee N, January V, Barthus C, et al:
Evaluation of a semi-automated reporter phage assay for
susceptibility testing of Mycobacterium tuberculosis isolates in
South Africa. Tuberculosis (Edinb). 88:64–68. 2008. View Article : Google Scholar
|
42
|
Minion J and Pai M: Bacteriophage assays
for rifampicin resistance detection in Mycobacterium tuberculosis:
updated meta-analysis. Int J Tuberc Lung Dis. 14:941–951.
2010.PubMed/NCBI
|
43
|
Rondón L, Piuri M, Jacobs WR Jr, et al:
Evaluation of fluoromycobacteriophages for detecting drug
resistance in Mycobacterium tuberculosis. J Clin Microbiol.
49:1838–1842. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
da Silva JL, Piuri M, Broussard G, et al:
Application of BRED technology to construct recombinant D29
reporter phage expressing EGFP. FEMS Microbiol Lett. 344:166–172.
2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Piuri M, Rondón L, Urdániz E and Hatfull
GF: Generation of affinity-tagged fluoromycobacteriophages by mixed
assembly of phage capsids. Appl Environ Microbiol. 79:5608–5615.
2013. View Article : Google Scholar : PubMed/NCBI
|