1
|
Lawes CM, Vander Hoorn S and Rodgers A;
International Society of Hypertension: Global burden of
blood-pressure-related disease, 2001. Lancet. 371:1513–1518. 2008.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Xi B, Cheng H, Shen Y, et al: Physical
activity modifies the associations between genetic variants and
hypertension in the Chinese children. Atherosclerosis. 225:376–380.
2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tanira MO and Al Balushi KA: Genetic
variations related to hypertension: A review. J Hum Hypertens.
19:7–19. 2005. View Article : Google Scholar
|
4
|
Xi B, Shen Y, Reilly KH, Wang X and Mi J:
Recapitulation of four hypertension susceptibility genes (CSK,
CYP17A1, MTHFR and FGF5) in East Asians. Metabolism. 62:196–203.
2013. View Article : Google Scholar
|
5
|
Xi B, Tang W and Wang Q: Polymorphism near
the ATP2B1 gene is associated with hypertension risk in East
Asians: A meta-analysis involving 15909 cases and 18529 controls.
Blood Press. 21:134–138. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Binder A: A review of the genetics of
essential hypertension. Curr Opin Cardiol. 22:176–184. 2007.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Whelton PK, He J, Appel LJ, et al: Primary
prevention of hypertension: Clinical and public health advisory
from The National High Blood Pressure Education Program. JAMA.
288:1882–1888. 2002. View Article : Google Scholar : PubMed/NCBI
|
8
|
Jjingo D, Conley AB, Yi SV, Lunyak VV and
Jordan IK: On the presence and role of human gene-body DNA
methylation. Oncotarget. 3:462–474. 2012.PubMed/NCBI
|
9
|
Zemach A, McDaniel IE, Silva P and
Zilberman D: Genome-wide evolutionary analysis of eukaryotic DNA
methylation. Science. 328:916–919. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kim MS, Lee J and Sidransky D: DNA
methylation markers in colorectal cancer. Cancer Metastasis Rev.
29:181–206. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kerr KM, Galler JS, Hagen JA, Laird PW and
Laird-Offringa IA: The role of DNA methylation in the development
and progression of lung adenocarcinoma. Dis Markers. 23:5–30. 2007.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Akalin A, Garrett-Bakelman FE, Kormaksson
M, et al: Base-pair resolution DNA methylation sequencing reveals
profoundly divergent epigenetic landscapes in acute myeloid
leukemia. PLoS Genet. 8:e10027812012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Smolarek I, Wyszko E, Barciszewska AM, et
al: Global DNA methylation changes in blood of patients with
essential hypertension. Med Sci Monit. 16:CR149–CR155.
2010.PubMed/NCBI
|
14
|
Kulkarni A, Chavan-Gautam P, Mehendale S,
Yadav H and Joshi S: Global DNA methylation patterns in placenta
and its association with maternal hypertension in pre-eclampsia.
DNA Cell Biol. 30:79–84. 2011. View Article : Google Scholar
|
15
|
Friso S, Pizzolo F, Choi SW, et al:
Epigenetic control of 11 beta-hydroxysteroid dehydrogenase 2 gene
promoter is related to human hypertension. Atherosclerosis.
199:323–327. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang LN, Liu PP, Wang L, et al: Lower
ADD1 gene promoter DNA methylation increases the risk of essential
hypertension. PLoS One. 8:e634552013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liu J, Zhao D, Liu J, Qi Y, Sun J and Wang
W: Prevalence of diabetes mellitus in outpatients with essential
hypertension in China: A cross-sectional study. BMJ Open.
3:e0037982013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Iynedjian PB: Molecular physiology of
mammalian glucokinase. Cell Mol Life Sci. 66:27–42. 2009.
View Article : Google Scholar :
|
19
|
Heredia VV, Thomson J, Nettleton D and Sun
S: Glucose-induced conformational changes in glucokinase mediate
allosteric regulation: Transient kinetic analysis. Biochemistry.
45:7553–7562. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kamata K, Mitsuya M, Nishimura T, Eiki Ji
and Nagata Y: Structural basis for allosteric regulation of the
monomeric allo-steric enzyme human glucokinase. Structure.
12:429–438. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chiang FT, Chiu KC, Tseng YZ, Lee KC and
Chuang LM: Nucleotide(-258) G-to-A transition variant of the liver
glucokinase gene is associated with essential hypertension. Am J
Hypertens. 10:1049–1052. 1997. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yamada Y, Ando F and Shimokata H:
Association of polymorphisms of SORBS1, GCK and WISP1 with
hypertension in community-dwelling Japanese individuals. Hypertens
Res. 32:325–331. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Xu L, Zheng D, Wang L, et al: GCK
gene-body hypomethylation is associated with the risk of coronary
heart disease. Biomed Res Int. 2014:72014. View Article : Google Scholar
|
24
|
MacMahon S, Peto R, Collins R, et al:
Blood pressure, stroke and coronary heart disease: Part 1,
prolonged differences in blood pressure: prospective observational
studies corrected for the regression dilution bias. Lancet.
335:765–774. 1990. View Article : Google Scholar : PubMed/NCBI
|
25
|
Nadeem M, Ahmed SS, Mansoor S and Farooq
S: Risk factors for coronary heart disease in patients below 45
years of age. Pak J Med Sci. 29:91–96. 2013.PubMed/NCBI
|
26
|
European Society of Hypertension-European
Society of Cardiology Guidelines Committee: 2003 European Society
of Hypertension-European Society of Cardiology guidelines for the
management of arterial hypertension. J Hypertens. 21:1011–1053.
2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Perloff D, Grim C, Flack J, et al: Human
blood pressure determination by sphygmomanometry. Circulation.
88:2460–2470. 1993. View Article : Google Scholar : PubMed/NCBI
|
28
|
Jiang D, Zheng D, Wang L, et al: Elevated
PLA2G7 gene promoter methylation as a gender-specific marker of
aging increases the risk of coronary heart disease in females. PLoS
One. 8:e597522013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bassil CF, Huang Z and Murphy SK:
Bisulfite pyrosequencing. Methods Mol Biol. 1049:95–107.
2013.PubMed/NCBI
|
30
|
Illingworth RS, Gruenewald-Schneider U,
Webb S, et al: Orphan CpG islands identify numerous conserved
promoters in the mammalian genome. PLoS Genet. 6:e10011342010.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Maunakea AK, Nagarajan RP, Bilenky M, et
al: Conserved role of intragenic DNA methylation in regulating
alternative promoters. Nature. 466:253–257. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Movassagh M, Choy MK, Knowles DA, et al:
Distinct epigenomic features in end-stage failing human hearts.
Circulation. 124:2411–2422. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Jones PA: Functions of DNA methylation:
Islands, start sites, gene bodies and beyond. Nat Rev Genet.
13:484–492. 2012. View
Article : Google Scholar : PubMed/NCBI
|
34
|
Aran D, Toperoff G, Rosenberg M and
Hellman A: Replication timing-related and gene body-specific
methylation of active human genes. Hum Mol Genet. 20:670–680. 2011.
View Article : Google Scholar
|
35
|
Ball MP, Li JB, Gao Y, et al: Targeted and
genome-scale strategies reveal gene-body methylation signatures in
human cells. Nat Biotechnol. 27:361–368. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Cambien F, Warnet JM, Eschwege E,
Jacqueson A, Richard JL and Rosselin G: Body mass, blood pressure,
glucose, and lipids. Does plasma insulin explain their
relationships? Arteriosclerosis. 7:197–202. 1987. View Article : Google Scholar : PubMed/NCBI
|
37
|
Cheung BM, Ong KL, Tso AW, et al:
Gamma-glutamyl trans-ferase level predicts the development of
hypertension in Hong Kong Chinese. Clin Chim Acta. 412:1326–1331.
2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Chen DL, Zhang CJ, Fu YH, Mo YJ and Chen
FR: Correlation of angiotensin-converting enzyme 2 gene
polymorphisms to essential hypertension and ischemic stroke. Nan
Fang Yi Ke Da Xue Xue Bao. 30:1890–1892. 2010.In Chinese.
|