1
|
Feldmann M, Brennan FM and Maini RN:
Rheumatoid arthritis. Cell. 85:307–310. 1996. View Article : Google Scholar : PubMed/NCBI
|
2
|
Brennan FM and McInnes IB: Evidence that
cytokines play a role in rheumatoid arthritis. J Clin Invest.
118:3537–3545. 2008. View
Article : Google Scholar : PubMed/NCBI
|
3
|
McInnes IB and Schett G: The pathogenesis
of rheumatoid arthritis. N Engl J Med. 365:2205–2219. 2011.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Luo X, Tsai LM, Shen N and Yu D: Evidence
for microRNA-mediated regulation in rheumatic diseases. Ann Rheum
Dis. 69(Suppl 1): i30–i36. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kozomara A and Griffiths-Jones S: miR
Base: integrating microRNA annotation and deep-sequencing data.
Nucleic Acids Res. 39:D152–D157. 2011. View Article : Google Scholar
|
6
|
O’Connell RM, Rao DS and Baltimore D:
microRNA regulation of inflammatory responses. Annu Rev Immunol.
30:295–312. 2012. View Article : Google Scholar
|
7
|
Pauley KM, Cha S and Chan EK: MicroRNA in
autoimmunity and autoimmune diseases. J Autoimmun. 32:189–194.
2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Stanczyk J, Pedrioli DM, Brentano F, et
al: Altered expression of MicroRNA in synovial fibroblasts and
synovial tissue in rheumatoid arthritis. Arthritis Rheum.
58:1001–1009. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Niimoto T, Nakasa T, Ishikawa M, et al:
MicroRNA-146a expresses in interleukin-17 producing T cells in
rheumatoid arthritis patients. BMC Musculoskelet Disord.
11:2092010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Stanczyk J, Ospelt C, Karouzakis E, et al:
Altered expression of microRNA-203 in rheumatoid arthritis synovial
fibroblasts and its role in fibroblast activation. Arthritis Rheum.
63:373–381. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lu MC, Yu CL, Chen HC, Yu HC, Huang HB and
Lai NS: Increased miR-223 expression in T cells from patients with
rheumatoid arthritis leads to decreased insulin-like growth
factor-1 mediated interleukin-10 production. Clin Exp Immunol.
177:641–51. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kurowska-Stolarska M, Alivernini S,
Ballantine LE, et al: MicroRNA-155 as a proinflammatory regulator
in clinical and experimental arthritis. Proc Natl Acad Sci USA.
108:11193–11198. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nakasa T, Shibuya H, Nagata Y, Niimoto T
and Ochi M: The inhibitory effect of microRNA-146a expression on
bone destruction in collagen-induced arthritis. Arthritis Rheum.
63:1582–1590. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kawaguchi T, Komatsu S, Ichikawa D, et al:
Clinical impact of circulating miR-221 in plasma of patients with
pancreatic cancer. Br J Cancer. 108:361–369. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhao R, Wu J, Jia W, et al: Plasma miR-221
as a predictive biomarker for chemoresistance in breast cancer
patients who previously received neoadjuvant chemotherapy.
Onkologie. 34:675–680. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ergun S, Arman K, Temiz E, et al:
Expression patterns of miR-221 and its target caspase-3 in
different cancer cell lines. Mol Biol Rep. 41:5877–5881. 2014.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Yang X, Yang Y, Gan R, et al:
Downregulation of mir-221 and mir-222 restrain prostate cancer cell
proliferation and migration that is partly mediated by activation
of SIRT1. PLoS One. 9:e988332014. View Article : Google Scholar
|
18
|
Ye X, Bai W, Zhu H, et al: MiR-221
promotes trastuzumab-resistance and metastasis in HER2-positive
breast cancers by targeting PTEN. BMB Rep. 47:268–273. 2014.
View Article : Google Scholar :
|
19
|
Brown PN and Yin H: PNA-based microRNA
inhibitors elicit anti-inflammatory effects in microglia cells.
Chem Commun (Camb). 49:4415–4417. 2013. View Article : Google Scholar
|
20
|
Pandis I, Ospelt C, Karagianni N, et al:
Identification of microRNA-221/222 and microRNA-323-3p association
with rheumatoid arthritis via predictions using the human tumour
necrosis factor transgenic mouse model. Ann Rheum Dis.
71:1716–1723. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Aletaha D, Neogi T, Silman AJ, et al: 2010
Rheumatoid arthritis classification criteria: an american college
of rheumatology/european league against rheumatism collaborative
initiative. Arthritis Rheum. 62:2569–2581. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yoshioka Y, Kozawa E, Urakawa H, et al:
Suppression of hyaluronan synthesis alleviates inflammatory
responses in murine arthritis and in human rheumatoid synovial
fibroblasts. Arthritis Rheum. 65:1160–1170. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Semaan N, Frenzel L, Alsaleh G, et al:
miR-346 controls release of TNF-α protein and stability of its mRNA
in rheumatoid arthritis via tristetraprolin stabilization. PLoS
One. 6:e198272011. View Article : Google Scholar
|
24
|
Nakamachi Y, Kawano S, Takenokuchi M, et
al: MicroRNA-124a is a key regulator of proliferation and monocyte
chemoattractant protein 1 secretion in fibroblast-like synoviocytes
from patients with rheumatoid arthritis. Arthritis Rheum.
60:1294–1304. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Pauley KM, Satoh M, Chan AL, et al:
Upregulated miR-146a expression in peripheral blood mononuclear
cells from rheumatoid arthritis patients. Arthritis Res Ther.
10:R1012008. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Zhu S, Pan W, Song X, et al: The microRNA
miR-23b suppresses IL-17-associated autoimmune inflammation by
targeting TAB2, TAB3 and IKK-α. Nat Med. 18:1077–1086. 2012.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Nakasa T, Miyaki S, Okubo A, et al:
Expression of microRNA-146 in rheumatoid arthritis synovial tissue.
Arthritis Rheum. 58:1284–1292. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Fulci V, Scappucci G, Sebastiani GD, et
al: miR-223 is over-expressed in T-lymphocytes of patients affected
by rheumatoid arthritis. Hum Immunol. 71:206–211. 2011. View Article : Google Scholar
|
29
|
Niederer F, Trenkmann M, Ospelt C, et al:
Down-regulation of microRNA-34a* in rheumatoid arthritis
synovial fibroblasts promotes apoptosis resistance. Arthritis
Rheum. 64:1771–1779. 2012. View Article : Google Scholar
|
30
|
Filková M, Jüngel A, Gay RE and Gay S:
MicroRNAs in rheumatoid arthritis: potential role in diagnosis and
therapy. Bio Drugs. 26:131–141. 2012.
|
31
|
Kuipers H, Schnorfeil FM and Brocker T:
Differentially expressed microRNAs regulate plasmacytoid vs.
conventional dendritic cell development. Mol Immunol. 48:333–340.
2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Korn T, Bettelli E, Oukka M and Kuchroo
VK: IL-17 and Th17 Cells. Annu Rev Immunol. 27:485–517. 2009.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Croft M: The TNF family in T cell
differentiation and function - unanswered questions and future
directions. Semin Immunol. 26:183–190. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Schenten D, Nish SA, Yu S, et al:
Signaling through the adaptor molecule MyD88 in CD4+ T
cells is required to overcome suppression by regulatory T cells.
Immunity. 40:78–90. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Nish SA, Schenten D, Wunderlich FT, et al:
T cell-intrinsic role of IL-6 signaling in primary and memory
responses. Elife. 3:e019492014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ding L, Guo D, Homandberg GA, Buckwalter
JA and Martin JA: A single blunt impact on cartilage promotes
fibronectin fragmentation and upregulates cartilage degrading
stromelysin-1/matrix metalloproteinase-3 in a bovine ex vivo model.
J Orthop Res. 32:811–818. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Xue M, McKelvey K, Shen K, et al:
Endogenous MMP-9 and not MMP-2 promotes rheumatoid synovial
fibroblast survival, inflammation and cartilage degradation.
Rheumatology (Oxford). 53:2270–2279. 2014. View Article : Google Scholar
|