1
|
Pittenger MF, Mackay AM, Beck SC, Jaiswal
RK, Douglas R, et al: Multilineage potential of adult human
mesenchymal stem cells. Science. 284:143–147. 1999. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ivanova-Todorova E, Bochev I, Mourdjeva M,
Dimitrov R, et al: Adipose tissue-derived mesenchymal stem cells
are more potent suppressors of dendritic cells differentiation
compared to bone marrow-derived mesenchymal stem cells. Immunol
Lett. 126:37–42. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Baksh D, Yao R and Tuan RS: Comparison of
proliferative and multilineage differentiation potential of human
mesenchymal stem cells derived from umbilical cord and bone marrow.
Stem Cells. 25:1384–1392. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Orlic D, Kajstura J, Chimenti S, Jakoniuk
I, Anderson SM, Li B, et al: Bone marrow cells regenerate infarcted
myocardium. Nature. 410:701–705. 2001. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Troyer DL and Weiss ML: Wharton’s
jelly-derived cells are a primitive stromal cell population. Stem
Cells. 26:591–599. 2008. View Article : Google Scholar
|
6
|
Lee PH, Lee JE, Kim HS, Song SK, Lee HS,
Nam HS, et al: A randomized trial of mesenchymal stem cells in
multiple system atrophy. Ann Neurol. 72:32–40. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang Z, Lin H, Shi M, Xu R, Fu J, Lv J,
Chen L, Lv S, et al: Human umbilical cord mesenchymal stem cells
improve liver function and ascites in decompensated liver cirrhosis
patients. J Gastroenterol Hepatol. 27(Suppl 2): 112–120. 2012.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Dimarino AM, Caplan AI and Bonfield TL:
Mesenchymal stem cells in tissue repair. Front Immunol. 4:2012013.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Müller-Ehmsen J, Krausgrill B, Burst V,
Schenk K, et al: Effective engraftment but poor mid-term
persistence of mononuclear and mesenchymal bone marrow cells in
acute and chronic rat myocardial infarction. J Mol Cell Cardiol.
41:876–884. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Burlacu A: Tracking the mesenchymal stem
cell fate after transplantation into the infarcted myocardium. Curr
Stem Cell Res Ther. 8:284–291. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yin HN, Chai JK, Yao YM, Shen CA, et al:
Effect of ubiquitin-proteasome pathway on inflammatory reaction in
intestine and its barrier function in rats with postburn sepsis.
Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 18:649–652. 2006.In Chinese.
PubMed/NCBI
|
12
|
Caroff M and Karibian D: Structure of
bacterial lipopolysaccharides. Carbohydr Res. 338:2431–2447. 2003.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Haase R, Kirschning CJ, Sing A, Schröttner
P, et al: A dominant role of Toll-like receptor 4 in the signaling
of apoptosis in bacteria-faced macrophages. J Immunol.
171:4294–4303. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Bannerman DD, Erwert RD, Winn RK and
Harlan JM: TIRAP mediates endotoxin-induced NF-kappaB activation
and apoptosis in endothelial cells. Biochem Biophys Res Commun.
295:157–162. 2002. View Article : Google Scholar : PubMed/NCBI
|
15
|
Jung DY, Lee H, Jung BY, Ock J, et al:
TLR4, but not TLR2, signals autoregulatory apoptosis of cultured
microglia: A critical role of IFN-beta as a decision maker. J
Immunol. 174:6467–6476. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Vartanian KB, Stevens SL, Marsh BJ, et al:
LPS preconditioning redirects TLR signaling following stroke:
TRIF-IRF3 plays a seminal role in mediating tolerance to ischemic
injury. J Neuroinflammation. 8:1402011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li WC, Jiang DM, Hu N, Qi XT, Qiao B and
Luo XJ: Lipopolysaccharide preconditioning attenuates
neuroapoptosis and improves functional recovery through activation
of Nrf2 in traumatic spinal cord injury rats. Int J Neurosci.
123:240–247. 2013. View Article : Google Scholar
|
18
|
Ha T, Hua F, Liu X, Ma J, McMullen JR,
Shioi T, Izumo S, et al: Lipopolysaccharide-induced myocardial
protection against ischaemia/reperfusion injury is mediated through
a PI3K/Akt-dependent mechanism. Cardiovasc Res. 78:546–553. 2008.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Yao Y, Zhang F, Wang L, Zhang G, Wang Z,
Chen J and Gao X: Lipopolysaccharide preconditioning enhances the
efficacy of mesenchymal stem cells transplantation in a rat model
of acute myocardial infarction. J Biomed Sci. 16:742009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chetoui N, Boisvert M, Gendron S and
Aoudjit F: Interleukin-7 promotes the survival of human CD4+
effector/memory T cells by up-regulating Bcl-2 proteins and
activating the JAK/STAT signalling pathway. Immunology.
130:418–426. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Peter ME: The flip side of FLIP. Biochem
J. 382:e1–e3. 2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Irmler M, Thome M, Hahne M, Schneider P,
Hofmann K, et al: Inhibition of death receptor signals by cellular
FLIP. Nature. 388:190–195. 1997. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Perlman H, Pagliari LJ, Nguyen N, Bradley
K, Liu H and Pope RM: The Fas-FasL death receptor and PI3K pathways
independently regulate monocyte homeostasis. Eur J Immunol.
31:2421–2430. 2001. View Article : Google Scholar : PubMed/NCBI
|
24
|
Bai S, Liu H, Chen KH, Eksarko P, et al:
NF-kappaB-regulated expression of cellular FLIP protects rheumatoid
arthritis synovial fibroblasts from tumor necrosis factor
alpha-mediated apoptosis. Arthritis Rheum. 50:3844–3855. 2004.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Han Y, Chai J, Sun T, Li D and Tao R:
Differentiation of human umbilical cord mesenchymal stem cells into
dermal fibroblasts in vitro. Biochem Biophys Res Commun.
413:561–565. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Schmidt M, Hupe M, Endres N, et al: The
contact allergen nickel sensitizes primary human endothelial cells
and keratinocytes to TRAIL-mediated apoptosis. J Cell Mol Med.
14:1760–1776. 2010. View Article : Google Scholar
|
27
|
Chiou SH, Liu JH, Hsu WM, Chen SS, Chang
SY, Juan LJ, et al: Upregulation of Fas ligand expression by human
cytomegalovirus immediate-early gene product 2: A novel mechanism
in cytomegalovirus-induced apoptosis in human retina. J Immunol.
167:4098–4103. 2001. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yu LC, Flynn AN, Turner JR and Buret AG:
SGLT-1-mediated glucose uptake protects intestinal epithelial cells
against LPS-induced apoptosis and barrier defects: A novel cellular
rescue mechanism? FASEB J. 19:1822–1835. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Piao X, Komazawa-Sakon S, Nishina T, Koike
M, et al: c-FLIP maintains tissue homeostasis by preventing
apoptosis and programmed necrosis. Sci Signal.
5:ra932012.PubMed/NCBI
|
30
|
Yao YM, Chai JK and Sheng ZY: Diagnostic
criterion and management of burn sepsis. Zhonghua Shao Shang Za
Zhi. 19:65–66. 2003.In Chinese. PubMed/NCBI
|
31
|
Pevsner-Fischer M, Morad V, Cohen-Sfady M,
Rousso-Noori L, Zanin-Zhorov A, Cohen S, Cohen IR and Zipori D:
Toll-like receptors and their ligands control mesenchymal stem cell
functions. Blood. 109:1422–1432. 2007. View Article : Google Scholar
|
32
|
Wang Y, Abarbanell AM, Herrmann JL, Weil
BR, Manukyan MC, Poynter JA and Meldrum DR: TLR4 inhibits
mesenchymal stem cell (MSC) STAT3 activation and thereby exerts
deleterious effects on MSC-mediated cardioprotection. PLoS One.
5:e142062010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Choi KB, Wong F, Harlan JM, Chaudhary PM,
Hood L and Karsan A: Lipopolysaccharide mediates endothelial
apoptosis by a FADD-dependent pathway. J Biol Chem.
273:20185–20188. 1998. View Article : Google Scholar : PubMed/NCBI
|
34
|
Karahashi H and Amano F: Changes of
caspase activities involved in apoptosis of a macrophage-like cell
line J774.1/JA-4 treated with lipopolysaccharide (LPS) and
cycloheximide. Biol Pharm Bull. 23:140–144. 2000. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hull C, McLean G, Wong F, Duriez PJ and
Karsan A: Lipopolysaccharide signals an endothelial apoptosis
pathway through TNF receptor-associated factor 6-mediated
activation of c-Jun NH2-terminal kinase. J Immunol. 169:2611–2618.
2002. View Article : Google Scholar : PubMed/NCBI
|
36
|
Gidday JM: Cerebral preconditioning and
ischaemic tolerance. Nat Rev Neurosci. 7:437–448. 2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Rosenzweig HL, Lessov NS, Henshall DC,
Minami M, Simon RP and Stenzel-Poore MP: Endotoxin preconditioning
prevents cellular inflammatory response during ischemic
neuroprotection in mice. Stroke. 35:2576–2581. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Dirnagl U, Simon RP and Hallenbeck JM:
Ischemic tolerance and endogenous neuroprotection. Trends Neurosci.
26:248–254. 2003. View Article : Google Scholar : PubMed/NCBI
|
39
|
Murry CE, Jennings RB and Reimer KA:
Preconditioning with ischemia: A delay of lethal cell injury in
ischemic myocardium. Circulation. 74:1124–1136. 1986. View Article : Google Scholar : PubMed/NCBI
|
40
|
Thompson JW, Dave KR, Young JI and
Perez-Pinzon MA: Ischemic preconditioning alters the epigenetic
profile of the brain from ischemic intolerance to ischemic
tolerance. Neurotherapeutics. 10:789–797. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Chen J and Simon R: Ischemic tolerance in
the brain. Neurology. 48:306–311. 1997. View Article : Google Scholar : PubMed/NCBI
|
42
|
Islam CF, Mathie RT, Dinneen MD, Kiely EA,
Peters AM and Grace PA: Ischaemia-reperfusion injury in the rat
kidney: The effect of preconditioning. Br J Urol. 79:842–847. 1997.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Hickey E, Shi H, Van Arsdell G and Askalan
R: Lipopolysaccharide-induced preconditioning against ischemic
injury is associated with changes in toll-like receptor 4
expression in the rat developing brain. Pediatr Res. 70:10–14.
2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Wang ZJ, Zhang FM, Wang LS, Yao YW, Zhao Q
and Gao X: Lipopolysaccharides can protect mesenchymal stem cells
(MSCs) from oxidative stress-induced apoptosis and enhance
proliferation of MSCs via Toll-like receptor (TLR)-4 and PI3K/Akt.
Cell Biol Int. 33:665–674. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Krueger A, Baumann S, Krammer PH and
Kirchhoff S: FLICE-inhibitory proteins: regulators of death
receptor-mediated apoptosis. Mol Cell Biol. 21:8247–8254. 2001.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Chang DW, Xing Z, Pan Y,
Algeciras-Schimnich A, Barnhart BC, Yaish-Ohad S, Peter ME and Yang
X: c-FLIP(L) is a dual function regulator for caspase-8 activation
and CD95-mediated apoptosis. EMBO J. 21:3704–3714. 2002. View Article : Google Scholar : PubMed/NCBI
|
47
|
Willems F, Amraoui Z, Vanderheyde N,
Verhasselt V, et al: Expression of c-FLIP(L) and resistance to
CD95-mediated apoptosis of monocyte-derived dendritic cells:
inhibition by bisindolylmaleimide. Blood. 95:3478–3482.
2000.PubMed/NCBI
|