1
|
Iandiev I, Wurm A, Hollborn M, et al:
Müller cell response to blue light injury of the rat retina. Invest
Ophthalmol Vis Sci. 49:3559–3567. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Vázquez-Chona F, Song BK and Geisert EE
Jr: Temporal changes in gene expression after injury in the rat
retina. Invest Ophthalmol Vis Sci. 45:2737–2746. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wang AG, Chen CH, Yang CW, et al: Change
of gene expression profiles in the retina following optic nerve
injury. Brain Res Mol Brain Res. 101:82–92. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Brod RD, Olsen KR, Ball SF and Packer AJ:
The site of operating microscope light-induced injury on the human
retina. Am J Ophthalmol. 107:390–397. 1989. View Article : Google Scholar : PubMed/NCBI
|
5
|
Henkes HE: Light injury to the retina.
Manifestation of acute posterior multifocal placoid pigment
epitheliopathy (author’s transl). Klin Monbl Augenheilkd.
170:813–818. 1977.In German. PubMed/NCBI
|
6
|
Meier-Koll A: Differential diagnosis of
injury to the retina by means of electrically evoked light
sensations (electrophosphene). Albrecht Von Graefes Arch Klin Exp
Ophthalmol. 184:177–192. 1972.In German. View Article : Google Scholar
|
7
|
Wilson KM, Lynch CM, Faraci FM and Lentz
SR: Effect of mechanical ventilation on carotid artery thrombosis
induced by photochemical injury in mice. J Thromb Haemost.
1:2669–2674. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Parver LM: Photochemical injury to the
foveomacula of the monkey eye following argon blue-green panretinal
photocoagu-lation. Trans Am Ophthalmol Soc. 98:365–374. 2000.
|
9
|
Costa E, Kharlamov A, Guidotti A, Hayes R
and Armstrong D: Sequelae of biochemical events following
photochemical injury of rat sensory-motor cortex: mechanism of
ganglioside protection. Patol Fiziol Eksp Ter. 4:17–23.
1992.PubMed/NCBI
|
10
|
Noell WK, Walker VS, Kang BS and Berman S:
Retinal damage by light in rats. Invest Ophthalmol. 5:450–473.
1966.PubMed/NCBI
|
11
|
Cai YS, Xu D and Mo X: Clinical,
pathological and photochemical studies of laser injury of the
retina. Health Phys. 56:643–646. 1989. View Article : Google Scholar : PubMed/NCBI
|
12
|
Rattner A, Yu H, Williams J, Smallwood PM
and Nathans J: Endothelin-2 signaling in the neural retina promotes
the endothelial tip cell state and inhibits angiogenesis. Proc Natl
Acad Sci USA. 110:E3830–E3839. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kawasaki H, Wadhwa R and Taira K: World of
small RNAs: from ribozymes to siRNA and miRNA. Differentiation.
72:58–64. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Li CM, Zheng JG and Du GS: miRNA: a new
regulator of gene expression. Yi Chuan. 26:133–136. 2004.In
Chinese.
|
15
|
Luciano DJ, Mirsky H, Vendetti NJ and Maas
S: RNA editing of a miRNA precursor. RNA. 10:1174–1177. 2004.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Huang KM, Dentchev T and Stambolian D:
MiRNA expression in the eye. Mamm Genome. 19:510–516. 2008.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Lee RC, Feinbaum RL and Ambros V: The C.
elegans heterochronic gene lin-4 encodes small RNAs with antisense
complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI
|
18
|
Reich J, Snee MJ and Macdonald PM:
miRNA-dependent translational repression in the Drosophila ovary.
PLoS One. 4:e46692009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lee YS, Nakahara K, Pham JW, et al:
Distinct roles for Drosophila Dicer-1 and Dicer-2 in the
siRNA/miRNA silencing pathways. Cell. 117:69–81. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liang XH, Hart CE and Crooke ST:
Transfection of siRNAs can alter miRNA levels and trigger
non-specific protein degradation in mammalian cells. Biochim
Biophys Acta. 1829:455–468. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
McIver SC, Roman SD, Nixon B and
McLaughlin EA: miRNA and mammalian male germ cells. Hum Reprod
Update. 18:44–59. 2012. View Article : Google Scholar
|
22
|
Zhou P, Xu W, Peng X, et al: Large-scale
screens of miRNA-mRNA interactions unveiled that the 3′UTR of a
gene is targeted by multiple miRNAs. PLoS One. 8:e682042013.
View Article : Google Scholar
|
23
|
Fang L, Du WW, Yang X, et al: Versican
3′-untranslated region (3′-UTR) functions as a ceRNA in inducing
the development of hepatocellular carcinoma by regulating miRNA
activity. FASEB J. 27:907–919. 2013. View Article : Google Scholar
|
24
|
Zhu Q, Sun W, Okano K, et al: Sponge
transgenic mouse model reveals important roles for the microRNA-183
(miR-183)/96/182 cluster in postmitotic photoreceptors of the
retina. J Biol Chem. 286:31749–31760. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Liu Y, Han Y, Zhang H, et al: Synthetic
miRNA-mowers targeting miR-183-96-182 cluster or miR-210 inhibit
growth and migration and induce apoptosis in bladder cancer cells.
PLoS One. 7:e522802012. View Article : Google Scholar
|
26
|
Tang H, Bian Y, Tu C, et al: The
miR-183/96/182 cluster regulates oxidative apoptosis and sensitizes
cells to chemotherapy in gliomas. Curr Cancer Drug Targets.
13:221–231. 2013. View Article : Google Scholar
|
27
|
Xu S, Witmer PD, Lumayag S, Kovacs B and
Valle D: MicroRNA (miRNA) transcriptome of mouse retina and
identification of a sensory organ-specific miRNA cluster. J Biol
Chem. 282:25053–25066. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Krol J, Busskamp V, Markiewicz I, et al:
Characterizing light-regulated retinal microRNAs reveals rapid
turnover as a common property of neuronal microRNAs. Cell.
141:618–631. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lumayag S, Haldin CE, Corbett NJ, et al:
Inactivation of the microRNA-183/96/182 cluster results in
syndromic retinal degeneration. Proc Natl Acad Sci USA.
110:E507–E516. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lüesse HG, Roskoden T, Linke R, Otten U,
Heese K and Schwegler H: Modulation of mRNA expression of the
neurotrophins of the nerve growth factor family and their receptors
in the septum and hippocampus of rats after transient postnatal
thyroxine treatment. I Expression of nerve growth factor,
brain-derived neurotrophic factor, neurotrophin-3 and neuro-trophin
4 mRNA. Exp Brain Res. 119:1–8. 1998. View Article : Google Scholar
|
31
|
Hohn A, Leibrock J, Bailey K and Barde YA:
Identification and characterization of a novel member of the nerve
growth factor/brain-derived neurotrophic factor family. Nature.
344:339–341. 1990. View
Article : Google Scholar : PubMed/NCBI
|
32
|
Alvarez-Borda B, Haripal B and Nottebohm
F: Timing of brain-derived neurotrophic factor exposure affects
life expectancy of new neurons. Proc Natl Acad Sci USA.
101:3957–3961. 2004. View Article : Google Scholar : PubMed/NCBI
|
33
|
Chmielnicki E, Benraiss A, Economides AN
and Goldman SA: Adenovirally expressed noggin and brain-derived
neurotrophic factor cooperate to induce new medium spiny neurons
from resident progenitor cells in the adult striatal ventricular
zone. J Neurosci. 24:2133–2142. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Pencea V, Bingaman KD, Wiegand SJ and
Luskin MB: Infusion of brain-derived neurotrophic factor into the
lateral ventricle of the adult rat leads to new neurons in the
parenchyma of the striatum, septum, thalamus and hypothalamus. J
Neurosci. 21:6706–6717. 2001.PubMed/NCBI
|
35
|
von Diemen L, Kapczinski F, Sordi AO, et
al: Increase in brain-derived neurotrophic factor expression in
early crack cocaine withdrawal. Int J Neuropsychopharmacol.
17:33–40. 2014. View Article : Google Scholar
|
36
|
Abu El-Asrar AM, Nawaz MI, Siddiquei MM,
Al-Kharashi AS, Kangave D and Mohammad G: High-mobility group box-1
induces decreased brain-derived neurotrophic factor-mediated
neuroprotection in the diabetic retina. Mediators Inflamm.
2013:8630362013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chen R, Yin XB, Peng CX and Li GL: Effect
of brain-derived neurotrophic factor on c-jun expression in the rd
mouse retina. Int J Ophthalmol. 5:266–271. 2012.PubMed/NCBI
|
38
|
Numakawa T, Adachi N, Richards M, Chiba S
and Kunugi H: Brain-derived neurotrophic factor and
glucocorticoids: reciprocal influence on the central nervous
system. Neuroscience. 239:157–172. 2013. View Article : Google Scholar
|
39
|
Yan Q, Rosenfeld RD, Matheson CR, et al:
Expression of brain-derived neurotrophic factor protein in the
adult rat central nervous system. Neuroscience. 78:431–448. 1997.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Niu C and Yip HK: Neuroprotective
signaling mechanisms of telomerase are regulated by brain-derived
neurotrophic factor in rat spinal cord motor neurons. J Neuropathol
Exp Neurol. 70:634–652. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Fryer HJ, Wolf DH, Knox RJ, et al:
Brain-derived neurotrophic factor induces excitotoxic sensitivity
in cultured embryonic rat spinal motor neurons through activation
of the phosphati-dylinositol 3-kinase pathway. J Neurochem.
74:582–595. 2000. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang W, Salvaterra PM, Loera S and Chiu
AY: Brain-derived neurotrophic factor spares choline
acetyltransferase mRNA following axotomy of motor neurons in vivo.
J Neurosci Res. 47:134–143. 1997. View Article : Google Scholar : PubMed/NCBI
|
43
|
Fujieda H and Sasaki H: Expression of
brain-derived neurotrophic factor in cholinergic and dopaminergic
amacrine cells in the rat retina and the effects of constant light
rearing. Exp Eye Res. 86:335–343. 2008. View Article : Google Scholar
|
44
|
Cellerino A, Arango-González BA and Kohler
K: Effects of brain-derived neurotrophic factor on the development
of NADPH-diaphorase/nitric oxide synthase-positive amacrine cells
in the rodent retina. Eur J Neurosci. 11:2824–2834. 1999.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Cellerino A and Kohler K: Brain-derived
neurotrophic factor/neurotrophin-4 receptor TrkB is localized on
ganglion cells and dopaminergic amacrine cells in the vertebrate
retina. J Comp Neurol. 386:149–160. 1997. View Article : Google Scholar : PubMed/NCBI
|
46
|
Leake PA, Hradek GT, Hetherington AM and
Stakhovskaya O: Brain-derived neurotrophic factor promotes cochlear
spiral ganglion cell survival and function in deafened, developing
cats. J Comp Neurol. 519:1526–1545. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Bonnet D, Garcia M, Vecino E, Lorentz JG,
Sahel J and Hicks D: Brain-derived neurotrophic factor signalling
in adult pig retinal ganglion cell neurite regeneration in vitro.
Brain Res. 1007:142–151. 2004. View Article : Google Scholar : PubMed/NCBI
|
48
|
Nakazawa T, Tamai M and Mori N:
Brain-derived neurotrophic factor prevents axotomized retinal
ganglion cell death through MAPK and PI3K signaling pathways.
Invest Ophthalmol Vis Sci. 43:3319–3326. 2002.PubMed/NCBI
|
49
|
Ladewig T, Fellner S, Zrenner E, Kohler K
and Guenther E: BDNF regulates NMDA receptor activity in developing
retinal ganglion cells. Neuroreport. 15:2495–2499. 2004. View Article : Google Scholar : PubMed/NCBI
|
50
|
Rothe T, Bähring R, Carroll P and Grantyn
R: Repetitive firing deficits and reduced sodium current density in
retinal ganglion cells developing in the absence of BDNF. J
Neurobiol. 40:407–419. 1999. View Article : Google Scholar : PubMed/NCBI
|
51
|
Zhang M, Mo X, Fang Y, et al: Rescue of
photoreceptors by BDNF gene transfer using in vivo electroporation
in the RCS rat of retinitis pigmentosa. Curr Eye Res. 34:791–799.
2009. View Article : Google Scholar : PubMed/NCBI
|
52
|
Caffé AR, Söderpalm AK, Holmqvist I and
van Veen T: A combination of CNTF and BDNF rescues rd
photoreceptors but changes rod differentiation in the presence of
RPE in retinal explants. Invest Ophthalmol Vis Sci. 42:275–282.
2001.PubMed/NCBI
|
53
|
Weeraratne SD, Amani V, Teider N, et al:
Pleiotropic effects of miR-183~96~182 converge to regulate cell
survival, proliferation and migration in medulloblastoma. Acta
Neuropathol. 123:539–552. 2012. View Article : Google Scholar : PubMed/NCBI
|
54
|
Mihelich BL, Khramtsova EA, Arva N, et al:
miR-183-96-182 cluster is overexpressed in prostate tissue and
regulates zinc homeostasis in prostate cells. J Biol Chem.
286:44503–44511. 2011. View Article : Google Scholar : PubMed/NCBI
|