1
|
Custer B, Sullivan SD, Hazlet TK, Iloeje
U, Veenstra DL and Kowdley KV: Global epidemiology of hepatitis B
virus. J Clin Gastroenterol. 38:S158–S168. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Perz JF, Armstrong GL, Farrington LA,
Hutin YJ and Bell BP: The contributions of hepatitis B virus and
hepatitis C virus infections to cirrhosis and primary liver cancer
worldwide. J Hepatol. 45:529–538. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Buchmann P, Dembek C, Kuklick L, et al: A
novel therapeutic hepatitis B vaccine induces cellular and humoral
immune responses and breaks tolerance in hepatitis B virus (HBV)
transgenic mice. Vaccine. 31:1197–1203. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Rehermann B: Immune responses in hepatitis
B virus infection. Semin Liver Dis. 23:21–38. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Baumert TF, Thimme R and Von Weizsacker F:
Pathogenesis of hepatitis B virus infection. World J Gastroenterol.
13:82–90. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Thimme R, Wieland S, Steiger C, et al:
CD8+ T cells mediate viral clearance and disease pathogenesis
during acute hepatitis B virus infection. J Virol. 77:68–76. 2003.
View Article : Google Scholar :
|
7
|
Chen W, Shi M, Shi F, et al: HBcAg-pulsed
dendritic cell vaccine induces Th1 polarization and production of
hepatitis B virus-specific cytotoxic T lymphocytes. Hepatol Res.
39:355–365. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yang BF, Zhao HL, Xue C, et al:
Recombinant heat shock protein 65 carrying hepatitis B core antigen
induces HBcAg-specific CTL response. Vaccine. 25:4478–4486. 2007.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Tang Y, Chen X, Zhang Y, et al: Fusion
protein of tapasin and hepatitis B core antigen 18–27 enhances T
helper cell type 1/2 cytokine ratio and antiviral immunity by
inhibiting suppressors of cytokine signaling family members 1/3 in
hepatitis B virus transgenic mice. Mol Med Rep. 9:1171–1178.
2014.PubMed/NCBI
|
10
|
Kim D, Jeon C, Kim JH, et al: Cytoplasmic
transduction peptide (CTP): new approach for the delivery of
biomolecules into cytoplasm in vitro and in vivo. Exp Cell Res.
312:1277–1288. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Song L, Zhuo M, Tang Y, Chen X, Yu Y, Tang
Z, et al: Ubiquitin-modified hepatitis B virus core antigen
effectively facilitates antigen presentation and enhances cytotoxic
T lymphocyte activity via the cytoplasmic transduction peptide
invitro. Mol Med Rep. 12:289–296. 2015.PubMed/NCBI
|
12
|
Kerscher O, Felberbaum R and Hochstrasser
M: Modification of proteins by ubiquitin and ubiquitin-like
proteins. Annu Rev Cell Dev Biol. 22:159–180. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Goldberg AL: Protein degradation and
protection against misfolded or damaged proteins. Nature.
426:895–899. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Bandi P, Garcia ML, Booth CJ, Chisari FV
and Robek MD: Bortezomib inhibits hepatitis B virus replication in
transgenic mice. Antimicrob Agents Chemother. 54:749–756. 2010.
View Article : Google Scholar :
|
15
|
Loureiro J and Ploegh HL: Antigen
Presentation and the ubiquitin-proteasome system in host-pathogen
interactions. Adv Immunol. 92:225–305. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kerscher O, Felberbaum R and Hochstrasser
M: Modification of proteins by ubiquitin and ubiquitin-like
proteins. Annu Rev Cell Dev Biol. 22:159–180. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Welchman RL, Gordon C and Mayer RJ:
Ubiquitin and ubiq-uitin-like proteins as multifunctional signals.
Nat Rev Mol Cell Biol. 6:599–609. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Song L, Zhuo M, Tang Y, Chen X, Tang Z and
Zang G: Ubiquitin-hepatitis B core antigen-cytoplasmic transduction
peptide enhances HBV-specific humoral and CTL immune responses in
vivo. International Immunopharmacology. 23:1–7. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chen JH, Yu YS, Chen XH, Liu HH, Zang GQ
and Tang ZH: Enhancement of CTLs induced by DCs loaded with
ubiqui-tinated hepatitis B virus core antigen. World J
Gastroenterol. 18:1319–1327. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Guidotti LG, Matzke B, Schaller H and
Chisari FV: High-level hepatitis B virus replication in transgenic
mice. J Virol. 69:6158–6169. 1995.PubMed/NCBI
|
21
|
Crawford TQ, Ndhlovu LC, Tan A, et al:
HIV-1 infection abrogates CD8+T cell mitogen-activated protein
kinase signaling responses. J Virol. 85:12343–12350. 2011.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Lycke NY and Coico R: Measurement of
immunoglobulin synthesis using the ELISPOT assay. Curr Protoc
Immunol. 14:2001. View Article : Google Scholar
|
23
|
Chen X, Lai J, Pan Q, Tang Z, Yu Y and
Zang G: The delivery of HBcAg via Tat-PTD enhances specific immune
response and inhibits Hepatitis B virus replication in transgenic
mice. Vaccine. 28:3913–3919. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Huang Y, Chen Z, Jia H, Wu W, Zhong S and
Zhou C: Induction of Tc1 response and enhanced cytotoxic T
lymphocyte activity in mice by dendritic cells transduced with
adenovirus expressing HBsAg. Clin Immunol. 119:280–290. 2006.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Boni C, Fisicaro P, Valdatta C, et al:
Characterization of hepatitis B virus (HBV)-specific T-cell
dysfunction in chronic HBV infection. J Virol. 81:4215–4225. 2007.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Deng Q, Mancini-Bourgine M, Zhang X, et
al: Hepatitis B virus as a gene delivery vector activating foreign
antigenic T cell response that abrogates viral expression in mouse
models. Hepatology. 50:1380–1391. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Neefjes J, Jongsma ML, Paul P and Bakke O:
Towards a systems understanding of MHC class I and MHC class II
antigen presentation. Nat Rev Immunol. 11:823–836. 2011.PubMed/NCBI
|
28
|
Tavakoli S, Mederacke I, Herzog-Hauff S,
et al: Peripheral blood dendritic cells are phenotypically and
functionally intact in chronic hepatitis B virus (HBV) infection.
Clin Exp Immunol. 151:61–70. 2008. View Article : Google Scholar
|
29
|
Op den Brouw ML, Binda RS, Van Roosmalen
MH, et al: Hepatitis B virus surface antigen impairs myeloid
dendritic cell function: a possible immune escape mechanism of
hepatitis B virus. Immunology. 126:280–289. 2009. View Article : Google Scholar :
|
30
|
Chen X, Liu H, Tang Z, Yu Y and Zang G:
The modification of Tapasin enhances cytotoxic T lymphocyte
activity of intracel-lularly delivered CTL epitopes via cytoplasmic
transduction peptide. Acta Biochim Biophys Sin (Shanghai).
45:203–212. 2013. View Article : Google Scholar
|
31
|
Das A, Hoare M, Davies N, et al:
Functional skewing of the global CD8 T cell population in chronic
hepatitis B virus infection. J Exp Med. 205:2111–2124. 2008.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Chamoto K, Kosaka A, Tsuji T, et al:
Critical role of the Th1/Tc1 circuit for the generation of
tumor-specific CTL during tumor eradication in vivo by Th1-cell
therapy. Cancer Sci. 94:924–928. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Tsai SL, Sheen IS, Chien RN, et al:
Activation of Th1 immunity is a common immune mechanism for the
successful treatment of hepatitis B and C: tetramer assay and
therapeutic implications. J Biomed Sci. 10:120–135. 2003.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Boni C, Bertoletti A, Penna A, et al:
Lamivudine treatment can restore T cell responsiveness in chronic
hepatitis B. J Clin Invest. 102:968–975. 1998. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kosinska AD, Johrden L, Zhang E, et al:
DNA prime-adenovirus boost immunization induces a vigorous and
multifunctional T-cell response against hepadnaviral proteins in
the mouse and woodchuck model. J Virol. 86:9297–9310. 2012.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Seifert U and Krüger E: Remodelling of the
ubiq-uitin-proteasome system in response to interferons. Biochem
Soc Trans. 36:879–884. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Varshavsky A: The N-end rule. Cell.
69:725–735. 1992. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ciechanover A and Ben-Saadon R: N-terminal
ubiquitination: more protein substrates join in. Trends Cell Biol.
14:103–106. 2004. View Article : Google Scholar : PubMed/NCBI
|
39
|
Rock KL and Goldberg AL: Degradation of
cell proteins and the generation of MHC class I-presented peptides.
Ann Rev Immunol. 17:739–779. 1999. View Article : Google Scholar
|
40
|
Rodriguez F, Zhang J and Whitton JL: DNA
immunization: ubiquitination of a viral protein enhances cytotoxic
T-lymphocyte induction and antiviral protection but abrogates
antibody induction. J Virol. 71:8497–8503. 1997.PubMed/NCBI
|
41
|
Liu Y, Testa JS, Philip R, Block TM and
Mehta AS: A ubiquitin independent degradation pathway utilized by a
hepatitis B virus envelope protein to limit antigen presentation.
PLoS One. 6:e244772011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Roh S and Kim K: Overcoming tolerance in
hepatitis B virus transgenic mice: a possible involvement of
regulatory T cells. Microbiol Immunol. 47:453–460. 2003. View Article : Google Scholar : PubMed/NCBI
|
43
|
Akbar SM, Chen S, Al-Mahtab M, Abe M,
Hiasa Y and Onji M: Strong and multi-antigen specific immunity by
hepatitis B core antigen (HBcAg)-based vaccines in a murine model
of chronic hepatitis B: HBcAg is a candidate for a therapeutic
vaccine against hepatitis B virus. Antiviral Res. 96:59–64. 2012.
View Article : Google Scholar : PubMed/NCBI
|