1
|
Alba L and Lindor K: Review article:
Non-alcoholic fatty liver disease. Aliment Pharmacol Ther.
17:977–986. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Jaskiewicz K, Rzepko R and Sledzinski Z:
Fibrogenesis in fatty liver associated with obesity and diabetes
mellitus type 2. Dig Dis Sci. 53:785–788. 2008. View Article : Google Scholar
|
3
|
Dong H, Lu FE and Zhao L: Chinese herbal
medicine in the treatment of nonalcoholic fatty liver disease. Chin
J Integr Med. 18:152–160. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wu PS, Wu SJ, Tsai YH, Lin YH and Chao JC:
Hot water extracted Lycium barbarum and Rehmannia glutinosa inhibit
liver inflammation and fibrosis in rats. Am J Chin Med.
39:1173–1191. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Xiao J, Liong EC, Ching YP, Chang RC, Fung
ML, Xu AM, So KF and Tipoe GL: Lycium barbarum polysaccharides
protect rat liver from non-alcoholic steatohepatitis-induced
injury. Nutr Diabetes. 3:e812013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ni W, Gao T, Wang H, Du Y, Li J, Li C, Wei
L and Bi H: Anti-fatigue activity of polysaccharides from the
fruits of four Tibetan plateau indigenous medicinal plants. J
Ethnopharmacol. 150:529–535. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Li J, Li SZ, Feng WJ and Yuan H: In vitro
antioxidant and free radical scavenging activities of total
flavonoids from the leaves of Lycium ruthenicum Murr. Food Sci.
13:0612010.
|
8
|
Peng Q, Song J, LV X, Wang Z, Huang L and
Du Y: Structural characterization of an arabinogalactan-protein
from the fruits of Lycium ruthenicum. J Agric Food Chem.
60:9424–9429. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang JH, Chen XQ and Zhang WJ: Study on
hypoglycemic function of polysaccharides from Lycium ruthenicum
Murr. fruit and its mechanism. Food Sci. 30:244–248. 2009.
|
10
|
Guo S, Copps KD, Dong X, Park S, Cheng Z,
Pocai A, Rossetti L, Sajan M, Farese RV and White MF: The Irs1
branch of the insulin signaling cascade plays a dominant role in
hepatic nutrient homeostasis. Mol Cell Biol. 29:5070–5083. 2009.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Malaguarnera M, Di Rosa M, Nicoletti F and
Malaguarnera L: Molecular mechanisms involved in NAFLD progression.
J Mol Med (Berl). 87:679–695. 2009. View Article : Google Scholar
|
12
|
Musso G, Gambino R and Cassader M: Recent
insights into hepatic lipid metabolism in non-alcoholic fatty liver
disease (NAFLD). Prog Lipid Res. 48:1–26. 2009. View Article : Google Scholar
|
13
|
Bijland S, Mancini SJ and Salt IP: Role of
AMP-activated protein kinase in adipose tissue metabolism and
inflammation. Clin Sci. 124:491–507. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Cohen JC, Horton JD and Hobbs HH: Human
fatty liver disease: Old questions and new insights. Science.
332:1519–1523. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Rahimi RS and Landaverde C: Nonalcoholic
fatty liver disease and the metabolic syndrome: Clinical
implications and treatment. Nutr Clin Pract. 28:40–51. 2013.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Sanyal AJ, Campbell-Sargent C, Mirshahi F,
Rizzo WB, Contos MJ, Sterling RK, Luketic VA, Shiffman ML and Clore
JN: Nonalcoholic steatohepatitis: Association of insulin resistance
and mitochondrial abnormalities. Gastroenterology. 120:1183–1192.
2001. View Article : Google Scholar : PubMed/NCBI
|
17
|
Utzschneider KM and Kahn SE: Review: The
role of insulin resistance in nonalcoholic fatty liver disease. J
Clin Endocrinol Metab. 91:4753–4761. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Serviddio G, Bellanti F and Vendemiale G:
Free radical biology for medicine: Learning from nonalcoholic fatty
liver disease. Free Radic Biol Med. 65:952–968. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Shimano H, Yahagi N, Amemiya-Kudo M, Hasty
AH, Osuga J, Tamura Y, Shionoiri F, Iizuka Y, Ohashi K, Harada K,
Gotoda T, et al: Sterol regulatory element-binding protein-1 as a
key transcription factor for nutritional induction of lipogenic
enzyme genes. J Biol Chem. 274:35832–35839. 1999. View Article : Google Scholar : PubMed/NCBI
|
20
|
Matsumoto M, Ogawa W, Akimoto K, Inoue H,
Miyake K, Furukawa K, Hayashi Y, Iguchi H, Matsuki Y, Hiramatsu R,
Shimano H, et al: PKClambda in liver mediates insulin-induced
SREBP-1c expression and determines both hepatic lipid content and
overall insulin sensitivity. J Clin Invest. 112:935–944. 2003.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Rakhshandehroo M, Knoch B, Müller M and
Kersten S: Peroxisome proliferator-activated receptor alpha target
genes. PPAR Res. 2010:6120892010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Reddy JK and Rao MS: Lipid metabolism and
liver inflammation. II Fatty liver disease and fatty acid
oxidation. Am J Physiol Gastrointest Liver Physiol. 290:G852–G858.
2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cao H, Maeda K, Gorgun CZ, Kim HJ, Park
SY, Shulman GI, Kim JK and Hotamisligil GS: Regulation of metabolic
responses by adipocyte/macrophage fatty acid-binding proteins in
leptin-deficient mice. Diabetes. 55:1915–1922. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ahmed MH and Byrne CD: Modulation of
sterol regulatory element binding proteins (SREBPs) as potential
treatments for non-alcoholic fatty liver disease (NAFLD). Drug
Discov Today. 12:740–747. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kohjima M, Higuchi N, Kato M, Kotoh K,
Yoshimoto T, Fujino T, Yada M, Yada R, Harada N, Enjoji M,
Takayanagi R and Nakamuta M: SREBP-1c, regulated by the insulin and
AMPK signaling pathways, plays a role in nonalcoholic fatty liver
disease. Int J Mol Med. 21:507–511. 2008.PubMed/NCBI
|
26
|
Barroso E, Rodriguez-Calvo R,
Serrano-Marco L, Astudillo AM, Balsinde J, Palomer X and
Vasquez-Carrera M: The PPARβ/δ activator GW501516 prevents the
down-regulation of AMPK caused by high-fat diet in liver and
amplifies the PGC-1α-lipin 1-PPARα pathway leading to increased
fatty acid oxidation. Endocrinology. 152:1848–1859. 2011.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Viollet B, Athea Y, Mounier R, Guigas B,
Zarrinpashneh E, Horman S, Lantier L, Hebrard S, Devin-Leclerc J,
Beauloye C, Foretz M, et al: AMPK: Lessons from transgenic and
knockout animals. Front Biosci (Landmark Ed). 14:19–44. 2009.
View Article : Google Scholar
|
28
|
Li Y, Xu S, Mihaylova MM, Zheng B, Hou X,
Jiang B, Park O, Luo Z, Lefai E, Shyy JY, Gao B, et al: AMPK
phosphorylates and inhibits SREBP activity to attenuate hepatic
steatosis and atherosclerosis in diet-induced insulin-resistant
mice. Cell Metab. 13:376–388. 2011. View Article : Google Scholar : PubMed/NCBI
|