1
|
Yu L, Nobel NA and Border WA: Therapeutic
strategies to halt renal fibrosis. Curr Opin Pharmacol. 2:177–181.
2002. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kim S and Iwao H: Molecular and cellular
mechanisms of angiotensin II-mediated cardiovascular and renal
diseases. Pharmacol Rev. 52:11–34. 2000.PubMed/NCBI
|
3
|
Unger T: The role of the renin angiotensin
system in the development of cardiovascular disease. Am J Cardiol.
89:3A–9A. 2002. View Article : Google Scholar
|
4
|
Warner FJ, Lubel JS, McCaughan GW and
Angus PW: Liver fibrosis: a balance of ACEs? Clin Sci (Lond).
113:109–118. 2007. View Article : Google Scholar
|
5
|
Paizis G, Gilbert RE, Cooper ME, Murthi P,
Schembri JM, Wu LL, Rumble JR, Kelly DJ, Tikellis C, Cox A,
Smallwood RA and Angus PW: Effect of angiotensin II type 1 receptor
blockade on experimental hepatic fibrogenesis. J Hepatol.
35:376–385. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Munshi MK, Uddin MN and Glaser SS: The
role of the renin-angiotensin system in liver fibrosis. Exp Biol
Med (Maywood). 236:557–566. 2011. View Article : Google Scholar
|
7
|
Simões e Silva AC, Pinheiro SV, Pereira
RM, Ferreira AJ and Santos RA: The therapeutic potential of
Angiotensin-(1–7) as a novel Renin-Angiotensin System mediator.
Mini Rev Med Chem. 6:603–609. 2006. View Article : Google Scholar
|
8
|
Carey RM and Siragy HM: Newly recognized
components of the renin-angiotensin system: potential roles in
cardiovascular and renal regulation. Endocr Rev. 24:261–271. 2003.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Iwai M and Horiuchi M: Devil and angel in
the renin-angiotensin system: ACE-angiotensin II-AT1 receptor axis
vs. ACE2-angiotensin-(1–7)-Mas receptor axis. Hypertens Res.
32:533–536. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pereira RM, dos Santos RA, da Costa Dias
FL, Teixeira MM and Simões e Silva AC: Renin-angiotensin system in
the pathogenesis of liver fibrosis. World J Gastroenterol.
15:2579–2586. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Guo DF, Sun YL, Hamet P and Inagami T: The
angiotensin II type 1 receptor and receptor-associated proteins.
Cell Res. 11:165–180. 2001. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang W, Huang Y, Zhou Z, Tang R, Zhao W,
Zeng L, Xu M, Cheng C, Gu S, Ying K, Xie Y and Mao Y:
Identification and characterization of AGTRAP, a human homolog of
murine angiotensin II receptor-associated protein (Agtrap). Int J
Biochem Cell Biol. 34:93–102. 2002. View Article : Google Scholar
|
13
|
Lopez-Ilasaca M, Liu X, Tamura K and Dzau
VJ: The angiotensin II type I receptor-associated protein, ATRAP,
is a transmembrane protein and a modulator of angiotensin II
signaling. Mol Biol Cell. 14:5038–5050. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tamura K, Wakui H, Maeda A, Dejima T,
Ohsawa M, Azushima K, Kanaoka T, Haku S, Uneda K, Masuda S, Azuma
K, Shigenaga A, Koide Y, Tsurumi-Ikeya Y, Matsuda M, Toya Y, Tokita
Y, Yamashita A and Umemura S: The physiology and pathophysiology of
a novel angiotensin receptor-binding protein ATRAP/Agtrap. Curr
Pharm Des. 19:3043–3048. 2013. View Article : Google Scholar
|
15
|
Wakui H, Tamura K, Masuda S, et al:
Enhanced angiotensin receptor-associated protein in renal tubule
suppresses angiotensin-dependent hypertension. Hypertension.
61:1203–1210. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wakui H, Tamura K, Matsuda M, Bai Y,
Dejima T, Shigenaga A, Masuda S, Azuma K, Maeda A, Hirose T,
Ishigami T, Toya Y, Yabana M, Minamisawa S and Umemura S:
Intrarenal suppression of angiotensin II type 1 receptor binding
molecule in angiotensin II-infused mice. Am J Physiol Renal
Physiol. 299:F991–F1003. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Vogel S, Piantedosi R, Frank J, Lalazar A,
Rockey DC, Friedman SL and Blaner WS: An immortalized rat liver
stellate cell line (HSC-T6): a new cell model for the study of
retinoid metabolism in vitro. J Lipid Res. 41:882–893.
2000.PubMed/NCBI
|
18
|
Bataller R, Sancho-Bru P, Ginès P, Lora
JM, Al-Garawi A, Solé M, Colmenero J, Nicolás JM, Jiménez W, Weich
N, Gutiérrez-Ramos JC, Arroyo V and Rodés J: Activated human
hepatic stellate cells express the renin-angiotensin system and
synthesize angiotensin II. Gastroenterology. 125:117–125. 2003.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Daviet L, Lehtonen JY, Tamura K, Griese
DP, Horiuchi M and Dzau VJ: Cloning and characterization of ATRAP,
a novel protein that interacts with the angiotensin II type 1
receptor. J Biol Chem. 274:17058–17062. 1999. View Article : Google Scholar : PubMed/NCBI
|
20
|
Cui T, Nakagami H, Iwai M, Takeda Y,
Shiuchi T, Tamura K, Daviet L and Horiuchi M: ATRAP, novel AT1
receptor associated protein, enhances internalization of AT1
receptor and inhibits vascular smooth muscle cell growth. Biochem
Biophys Res Commun. 279:938–941. 2000. View Article : Google Scholar
|
21
|
Wakui H, Tamura K, Tanaka Y, Matsuda M,
Bai Y, Dejima T, Masuda S, Shigenaga A, Maeda A, Mogi M, Ichihara
N, Kobayashi Y, Hirawa N, Ishigami T, Toya Y, Yabana M, Horiuchi M,
Minamisawa S and Umemura S: Cardiac-specific activation of
angiotensin II type 1 receptor-associated protein completely
suppresses cardiac hypertrophy in chronic angiotensin II-infused
mice. Hypertension. 55:1157–1164. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wakui H, Dejima T, Tamura K, Uneda K,
Azuma K, Maeda A, Ohsawa M, Kanaoka T, Azushima K, Kobayashi R,
Matsuda M, Yamashita A and Umemura S: Activation of angiotensin II
type 1 receptor-associated protein exerts an inhibitory effect on
vascular hypertrophy and oxidative stress in angiotensin
II-mediated hypertension. Cardiovasc Res. 100:511–519. 2013.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Oppermann M, Gess B, Schweda F and Castrop
H: Atrap deficiency increases arterial blood pressure and plasma
volume. J Am Soc Nephrol. 21:468–477. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li Z, Wang ZG, Chen X and Chen XD:
Inhibitory effect of angiotensin II type 1 receptor-associated
protein on vascular smooth muscle cell growth and neointimal
formation. Chin Med Sci J. 22:22–26. 2007.PubMed/NCBI
|
25
|
Tanaka Y, Tamura K, Koide Y, et al: The
novel angiotensin II type 1 receptor (AT1R)-associated protein
ATRAP downregulates AT1R and ameliorates cardiomyocyte hypertrophy.
FEBS Lett. 579:1579–1586. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lubel JS, Herath CB, Tchongue J, Grace J,
Jia Z, Spencer K, Casley D, Crowley P, Sievert W, Burrell LM and
Angus PW: Angiotensin-(1–7), an alternative metabolite of the
renin-angiotensin system, is up-regulated in human liver disease
and has antifibrotic activity in the bile-duct-ligated rat. Clin
Sci (Lond). 117:375–386. 2009. View Article : Google Scholar
|
27
|
Ferrario CM, Jessup J, Chappell MC,
Averill DB, Brosnihan KB, Tallant EA, Diz DI and Gallagher PE:
Effect of angiotensin-converting enzyme inhibition and angiotensin
II receptor blockers on cardiac angiotensin-converting enzyme 2.
Circulation. 111:2605–2610. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Igase M, Strawn WB, Gallagher PE, Geary RL
and Ferrario CM: Angiotensin II AT1 receptors regulate ACE2 and
angiotensin-(1–7) expression in the aorta of spontaneously
hypertensive rats. Am J Physiol Heart Circ Physiol.
289:H1013–H1019. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tan Z, Wu J and Ma H: Regulation of
angiotensin-converting enzyme 2 and Mas receptor by Ang-(1–7) in
heart and kidney of spontaneously hypertensive rats. J Renin
Angiotensin Aldosterone Syst. 12:413–419. 2011. View Article : Google Scholar : PubMed/NCBI
|