1
|
Bianchi ME: DAMPs, PAMPs and alarmins: all
we need to know about danger. J Leuk Biol. 81:1–5. 2007. View Article : Google Scholar
|
2
|
Ridnour LA, Cheng RY, Switzer CH, et al:
Toll-like receptors in the tumor microenvironment-poor prognosis or
new therapeutic opportunity. Clin Cancer Res. 19:1340–1346. 2013.
View Article : Google Scholar
|
3
|
Huang B, Zhao J, Li H, et al: Toll-like
receptors on tumor cells facilitate evasion of immune surveillance.
Cancer Res. 65:5009–5014. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Apetoh L, Ghiringhelli F, Tesniere A, et
al: Toll-like receptor 4-dependent contribution of the immune
system to anticancer chemotherapy and radiotherapy. Nat Med.
13:1050–1059. 2007. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Chen CL, Tsukamoto H, Liu JC, et al:
Reciprocal regulation by TLR4 and TGF-β in tumor-initiating
stem-like cells. J Clin Invest. 123:2832–2849. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yoo KH, Lim TJ and Chang SG: Monthly
intravesical bacillus Calmette-Guerin maintenance therapy for
non-muscle-invasive bladder cancer: 10-year experience in a single
institute. Exp Ther Med. 3:221–225. 2012.PubMed/NCBI
|
7
|
Salaun B, Zitvogel L, Asselin-Paturel C,
et al: TLR3 as a biomarker for the therapeutic efficacy of
double-stranded RNA in breast cancer. Cancer Res. 71:1607–1614.
2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Jasani B, Navabi H and Adams M: Ampligen:
a potential toll-like 3 receptor adjuvant for immunotherapy of
cancer. Vaccine. 27:3401–3404. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Schon MP and Schon M: TLR7 and TLR8 as
targets in cancer therapy. Oncogene. 27:190–199. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Weis SM and Cheresh DA: Tumor
angiogenesis: molecular pathways and therapeutic targets. Nat Med.
17:1359–1370. 2011. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Shojaei F, Wu X, Malik AK, et al: Tumor
refractoriness to anti-VEGF treatment is mediated by CD11b+ Gr1+
myeloid cells. Nat Biotechnol. 25:911–920. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Shojaei F, Wu X, Qu X, et al:
G-CSF-initiated myeloid cell mobilization and angiogenesis mediate
tumor refractoriness to anti-VEGF therapy in mouse models. Proc
Natl Acad Sci USA. 106:6742–6747. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Conley SJ, Gheordunescu E, Kakarala P, et
al: Antiangiogenic agents increase breast cancer stem cells via the
generation of tumor hypoxia. Proc Natl Acad Sci USA. 109:2784–2789.
2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Finke J, Ko J, Rini B, et al: MDSC as a
mechanism of tumor escape from sunitinib mediated anti-angiogenic
therapy. Int Immunopharmacol. 11:856–861. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yang L, DeBusk LM, Fukuda K, et al:
Expansion of myeloid immune suppressor Gr+ CD11b+ cells in
tumor-bearing host directly promotes tumor angiogenesis. Cancer
Cell. 6:409–421. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Dovedi SJ, Melis MH, Wilkinson RW, et al:
Systemic delivery of a TLR7 agonist in combination with radiation
primes durable antitumor immune responses in mouse models of
lymphoma. Blood. 121:251–259. 2013. View Article : Google Scholar
|
17
|
Sato Y, Goto Y, Narita N and Hoon DS:
Cancer cells expressing toll-like receptors and the tumor
microenvironment. Cancer Microenviron. 2(Suppl 1): 205–214. 2009.
View Article : Google Scholar : PubMed/NCBI
|
18
|
He W, Liu Q, Wang L, et al: TLR4 signaling
promotes immune escape of human lung cancer cells by inducing
immunosuppressive cytokines and apoptosis resistance. Mol Immunol.
44:2850–2859. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Adams S, Kozhaya L, Martiniuk F, et al:
Topical TLR7 agonist imiquimod can induce immune-mediated rejection
of skin metastases in patients with breast cancer. Clin Cancer Res.
18:6748–6757. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Dewan MZ, Vanpouille-Box C, Kawashima N,
et al: Synergy of topical toll-like receptor 7 agonist with
radiation and low-dose cyclophosphamide in a mouse model of
cutaneous breast cancer. Clin Cancer Res. 18:6668–6678. 2012.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Potente M, Gerhardt H and Carmeliet P:
Basic and therapeutic aspects of angiogenesis. Cell. 146:873–887.
2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Casanovas O, Hicklin DJ, Bergers G, et al:
Drug resistance by evasion of antiangiogenic targeting of VEGF
signaling in late-stage pancreatic islet tumors. Cancer Cell.
8:299–309. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chung AS, Wu X, Zhuang G, et al: An
interleukin-17-mediated paracrine network promotes tumor resistance
to anti-angiogenic therapy. Nat Med. 19:1114–1123. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Urbonaviciute V, Furnrohr BG, Meister S,
et al: Induction of inflammatory and immune responses by
HMGB1-nucleosome complexes: implications for the pathogenesis of
SLE. J Exp Med. 205:3007–3018. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Dumitriu IE, Baruah P, Valentinis B, et
al: Release of high mobility group box 1 by dendritic cells
controls T cell activation via the receptor for advanced glycation
end products. J Immunol. 174:7506–7515. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Messmer D, Yang H, Telusma G, et al: High
mobility group box protein 1: an endogenous signal for dendritic
cell maturation and Th1 polarization. J Immunol. 173:307–313. 2004.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Volpi C, Fallarino F, Bianchi R, et al: A
GpC-rich oligonucleotide acts on plasmacytoid dendritic cells to
promote immune suppression. J Immunol. 189:2283–2289. 2012.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Ochi A, Graffeo CS, Zambirinis CP, et al:
Toll-like receptor 7 regulates pancreatic carcinogenesis in mice
and humans. J Clin Invest. 122:4118–4129. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ellerman JE, Brown CK, de Vera M, et al:
Masquerader: high mobility group box-1 and cancer. Clin Cancer Res.
13:2836–2848. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Mittal D, Saccheri F, Vénéreau E, et al:
TLR4-mediated skin carcinogenesis is dependent on immune and
radioresistant cells. EMBO J. 29:2242–2252. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sims GP, Rowe DC, Rietdijk ST, et al:
HMGB1 and RAGE in Inflammation and Cancer. Annu Rev Immunol.
28:367–388. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Mitola S, Belleri M, Urbinati C, et al:
Cutting Edge: Extracellular high mobility group box-1 protein is a
proangiogenic cytokine. J Immunol. 176:12–15. 2006. View Article : Google Scholar
|
33
|
Huang J, Ni J, Liu K, et al: HMGB1
promotes drug resistance in osteosarcoma. Cancer Res. 72:230–238.
2012. View Article : Google Scholar
|