1
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Graves P and Zeng Y: Biogenesis of
mammalian microRNAs: A global view. Genomics Proteomics
Bioinformatics. 10:239–245. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Huang Y, Shen XJ, Zou Q and Zhao QL:
Biological functions of microRNAs. Bioorg Khim. 36:747–752.
2010.
|
4
|
Sundermeier TR and Palczewski K: The
physiological impact of microRNA gene regulation in the retina.
Cell Mol Life Sci. 69:2739–2750. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Karali M, Peluso I, Marigo V and Banfi S:
Identification and characterization of microRNAs expressed in the
mouse eye. Invest Ophthalmol Vis Sci. 8:509–515. 2007. View Article : Google Scholar
|
6
|
Roden D, Bosley TM, Fowble B, Clark J,
Savino PJ, Sergott RC and Schatz NJ: Delayed radiation injury to
the retrobulbar optic nerves and chiasm. Clinical syndrome and
treatment with hyperbaric oxygen and corticosteroids.
Ophthalmology. 97:346–351. 1990. View Article : Google Scholar : PubMed/NCBI
|
7
|
Chaudhry MA, Omaruddin RA, Kreger B, de
Toledo SM and Azzam EL: MicroRNA responses to chronic or acute
exposures to low dose ionizing radiation. Mol Biol Rep.
39:7549–7558. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Templin T, Paul S, Amundson SA, Young EF,
Barker CA, Wolden SL and Smilenov LB: Radiation-induced micro-RNA
expression changes in peripheral blood cells of radiotherapy
patients. Int J Radiat Oncol Biol Phys. 80:549–557. 2011.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Lee MS and Borruat FX: Should patients
with radiation-induced optic neuropathy receive any treatment? J
Neuroophthalmol. 31:83–88. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Levy RL and Miller NR: Hyperbaric oxygen
therapy for radiation-induced optic neuropathy. Ann Acad Med
Singapore. 35:151–157. 2006.PubMed/NCBI
|
11
|
Danesh-Meyer HV: Radiation-induced optic
neuropathy. J Clin Neurosci. 15:95–100. 2008. View Article : Google Scholar
|
12
|
Mo MH, Chen L, Fu Y, Wang W and Fu SW:
Cell-free circulating miRNA biomarkers in cancer. J Cancer.
3:432–448. 2012. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Li JY, Yong TY, Michael MZ and Gleadle JM:
Review: The role of microRNAs in kidney disease. Nephrology
(Carlton). 15:599–608. 2010. View Article : Google Scholar
|
14
|
Hulsmans M and Holvoet P: MicroRNAs as
early biomarkers in obesity and related metabolic and
cardiovascular diseases. Curr Pharm Des. 19:5704–5717. 2013.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhao Z, Zhao Q, Warrick J, Lockwood CM,
Woodworth A, Moley KH and Gronowski AM: Circulating microRNA
miR-323-3p as a biomarker of ectopic pregnancy. Clin Chem.
58:896–905. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Schöler N, Langer C, Döhner H, Buske C and
Kuchenbauer F: Serum microRNAs as a novel class of biomarkers: A
comprehensive review of the literature. Exp Hematol. 38:1126–1130.
2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kroh EM, Parkin RK, Mitchell PS and Tewari
M: Analysis of circulating microRNA biomarkers in plasma and serum
using quantitative reverse transcription-PCR (qRT-PCR). Methods.
50:298–301. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Pinter R and Hindges R: Perturbations of
microRNA function in mouse dicer mutants produce retinal defects
and lead to aberrant axon pathfinding at the optic chiasm. PLoS
One. 5:e100212010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Marler KJ, Suetterlin P, Dopplapudi A,
Rubikaite A, Adnan J, Maiorano NA, Lowe AS, Thompson ID, Pathania
M, Bordey A, et al: BDNF promotes axon branching of retinal
ganglion cells via miRNA-132 and p250GAP. J Neurosci. 34:969–979.
2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lulli M, Witort E, Papucci L, Torre E,
Schiavone N, Dal Monte M and Capaccioli S: Coenzyme Q10 protects
retinal cells from apoptosis induced by radiation in vitro and in
vivo. J Radiat Res. 53:695–703. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Balaiya S, Malyapa R, Hsi W, Murthy RK and
Chalam KV: Evaluation of proton beam radiation sensitivity of
proliferating choroidal endothelial and retinal ganglion cells with
clonogenic assay. Cutan Ocul Toxicol. 31:14–19. 2012. View Article : Google Scholar
|
22
|
Wang B and Xi Y: Challenges for microRNA
microarray data analysis. Microarrays (Basel). pp. 22013
|
23
|
Sarkar D, Parkin R, Wyman S, Bendoraite A,
Sather C, Delrow J, Godwin AK, Drescher C, Huber W, Gentleman R, et
al: Quality assessment and data analysis for microRNA expression
arrays. Nucleic Acids Res. 37:e172009. View Article : Google Scholar :
|
24
|
Finger PT: Tumour location affects the
incidence of cataract and retinopathy after ophthalmic plaque
radiation therapy. Br J Ophthalmol. 84:1068–1070. 2000. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wolfensberger TJ, Zwingli M, Egger E,
Schnyder P and Zografos L: Subclinical experimental optic
neuropathy after accelerated proton beam irradiation.
Ophthalmologica. 216:420–425. 2002. View Article : Google Scholar
|
26
|
Pinard CL, Mutsaers AJ, Mayer MN and Woods
JP: Retrospective study and review of ocular radiation side effects
following external-beam Cobalt-60 radiation therapy in 37 dogs and
12 cats. Can Vet J. 53:1301–1307. 2012.
|
27
|
Gupta A, Dhawahir-Scala F, Smith A, Young
L and Charles S: Radiation retinopathy: Case report and review. BMC
Ophthalmol. 7:62007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hong JP, Li XM, Li MX and Zheng FL: VEGF
suppresses epithelial-mesenchymal transition by inhibiting the
expression of Smad3 and miR-192, a Smad3-dependent microRNA. Int J
Mol Med. 31:1436–1442. 2013.PubMed/NCBI
|
29
|
Li S, Hu R, Wang C, Guo F, Li X and Wang
S: miR-22 inhibits proliferation and invasion in estrogen receptor
α-positive endometrial endometrioid carcinomas cells. Mol Med Rep.
9:293–2399. 2014.
|
30
|
Tognini P and Pizzorusso T:
MicroRNA212/132 family: Molecular transducer of neuronal function
and plasticity. Int J Biochem Cell Biol. 44:6–10. 2012. View Article : Google Scholar
|
31
|
Huang N, Lin J, Ruan J, Su N, Qing R, Liu
F, He B, Lv C, Zheng D and Luo R: MiR-219-5p inhibits
hepatocellular carcinoma cell proliferation by targeting
glypican-3. FEBS Lett. 586:884–891. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu K, Huang J, Xie M, Yu Y, Zhu S, Kang
R, Cao L, Tang D and Duan X: MIR34A regulates autophagy and
apoptosis by targeting HMGB1 in the retinoblastoma cell. Autophagy.
10:442–452. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ragusa M, Majorana A, Banelli B,
Barbagallo D, Statello L, Casciano I, Guglielmino MR, Duro LR,
Scalia M, Magro G, et al: MIR152, MIR200B, and MIR338, human
positional and functional neuroblastoma candidates, are involved in
neuroblast differentiation and apoptosis. J Mol Med (Berl).
88:1041–1053. 2010. View Article : Google Scholar
|
34
|
Kumamoto K, Spillare EA, Fujita K,
Horikawa I, Yamashita T, Appella E, Nagashima M, Takenoshita S,
Yokota J and Harris CC: Nutlin-3a activates p53 to both
down-regulate inhibitor of growth 2 and up-regulate mir-34a,
mir-34b, and mir-34c expression and induce senescence. Cancer Res.
68:3193–3203. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Guy J and Schatz NJ: Hyperbaric oxygen in
the treatment of radiation induced optic neuropathy. Ophthalmology.
93:1083–1088. 1986. View Article : Google Scholar : PubMed/NCBI
|
36
|
Danesh Meyer HV, Savino PJ and Sergott RC:
Visual loss despite anticoagulation in radiation-induced optic
neuropathy. Clin Experiment Ophthalmol. 32:333–335. 2004.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Levy RL and Miller NR: Hyperbaric oxygen
therapy for radiation induced optic neuropathy. Ann Acad Med
Singapore. 35:151–157. 2006.PubMed/NCBI
|
38
|
Demizu Y, Murakami M, Miyawaki D, Niwa Y,
Akaqi T, Sasaki R, Terashima K, Suqa D, Kamae I and Hishikawa Y:
Analysis of vision loss caused by radiation-induced optic
neuropathy after particle therapy for head-and-neck and skull-base
tumors adjacent to optic nerves. Int J Radiat Oncol Biol Phys.
75:1487–1492. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Alvarez-Garcia I and Miska EA: MicroRNA
functions in animal development and human disease. Development.
132:4653–4662. 2005. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kress M, Hüttenhofer A, Landry M, Kuner R,
Favereaux A, Greenberg D, Bednarik J, Heppenstall P and Kronenberg
F: MicroRNAs in nociceptive circuits as predictors of future
clinical applications. Front Mol Neurosci. 6:332013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Cheng L, Sharples RA, Scicluna BJ and Hill
AF: Exosomes provide a protective and enriched source of miRNA for
biomarker profiling compared to intracellular and cell-free blood.
J Extracell Vesicles. 26:32014.
|