1
|
Frumkin LR: The pharmacological treatment
of pulmonary arterial hypertension. Pharmacol Rev. 64:583–620.
2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Humbert M, Morrell NW, Archer SL, Stenmark
KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O and
Voelkel NF: Cellular and molecular pathobiology of pulmonary
arterial hypertension. J Am Coll Cardiol. 43(Suppl 12): 13S–24S.
2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Orlandi A, Bochaton-Piallat ML, Gabbiani G
and Spagnoli LG: Aging, smooth muscle cells and vascular
pathobiology: Implications for atherosclerosis. Atherosclerosis.
188:221–230. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Luo Y, Xu DQ, Dong HY, Zhang B, Liu Y, Niu
W, Dong MQ and Li ZC: Tanshinone iia inhibits hypoxia-induced
pulmonary artery smooth muscle cell proliferation via
Akt/Skp2/p27-associated pathway. PLoS One. 8:e567742013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Stenmark KR, Fagan KA and Frid MG:
Hypoxia-induced pulmonary vascular remodeling: Cellular and
molecular mechanisms. Circ Res. 99:675–691. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Vasa M, Fichtlscherer S, Adler K, Aicher
A, Martin H, Zeiher AM and Dimmeler S: Increase in circulating
endothelial progenitor cells by statin therapy in patients with
stable coronary artery disease. Circulation. 103:2885–2890. 2001.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Sudar E, Dobutovic B, Soskic S, Mandusic
V, Zakula Z, Misirkic M, Vucicevic L, Janjetovic K, Trajkovic V,
Mikhailidis DP, et al: Regulation of inducible nitric oxide
synthase activity/expression in rat hearts from ghrelin-treated
rats. J Physiol Biochem. 67:195–204. 2011. View Article : Google Scholar
|
8
|
Isenovic ER, Meng Y, Divald A, Milivojevic
N and Sowers JR: Role of phosphatidylinositol 3-kinase/akt pathway
in angiotensin ii and insulin-like growth factor-1 modulation of
nitric oxide synthase in vascular smooth muscle cells. Endocrine.
19:287–292. 2002. View Article : Google Scholar
|
9
|
Kaneko FT, Arroliga AC, Dweik RA, Comhair
SA, Laskowski D, Oppedisano R, Thomassen MJ and Erzurum SC:
Biochemical reaction products of nitric oxide as quantitative
markers of primary pulmonary hypertension. Am J Respir Crit Care
Med. 158:917–923. 1998. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pepke-Zaba J, Higenbottam TW, Dinh-Xuan
AT, Stone D and Wallwork J: Inhaled nitric oxide as a cause of
selective pulmonary vasodilatation in pulmonary hypertension.
Lancet. 338:1173–1174. 1991. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ribeiro MO, Antunes E, de Nucci G,
Lovisolo SM and Zatz R: Chronic inhibition of nitric oxide
synthesis. A new model of arterial hypertension. Hypertension.
20:298–303. 1992. View Article : Google Scholar : PubMed/NCBI
|
12
|
Nagaya N, Uematsu M, Oya H, Sato N,
Sakamaki F, Kyotani S, Ueno K, Nakanishi N, Yamagishi M and
Miyatake K: Short-term oral administration of l-arginine improves
hemodynamics and exercise capacity in patients with precapillary
pulmonary hypertension. Am J Respir Crit Care Med. 163:887–891.
2001. View Article : Google Scholar : PubMed/NCBI
|
13
|
Mori M and Gotoh T: Regulation of nitric
oxide production by arginine metabolic enzymes. Biochem Biophys Res
Commun. 275:715–719. 2000. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wei LH, Wu G, Morris SM Jr and Ignarro LJ:
Elevated arginase I expression in rat aortic smooth muscle cells
increases cell proliferation. Proc Natl Acad Sci USA. 98:9260–9264.
2001. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ckless K, Lampert A, Reiss J, Kasahara D,
Poynter ME, Irvin CG, Lundblad LK, Norton R, van der Vliet A and
Janssen-Heininger YM: Inhibition of arginase activity enhances
inflammation in mice with allergic airway disease, in association
with increases in protein s-nitrosylation and tyrosine nitration. J
Immunol. 181:4255–4264. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lu X, Murphy TC, Nanes MS and Hart CM:
Ppar{gamma} regulates hypoxia-induced nox4 expression in human
pulmonary artery smooth muscle cells through nf-{kappa B. Am J
Physiol Lung Cell Mol Physiol. 299:L559–L566. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Crossno JT Jr, Garat CV, Reusch JE, Morris
KG, Dempsey EC, McMurtry IF, Stenmark KR and Klemm DJ:
Rosiglitazone attenuates hypoxia-induced pulmonary arterial
remodeling. Am J Physiol Lung Cell Mol Physiol. 292:L885–L897.
2007. View Article : Google Scholar
|
18
|
Corraliza IM, Campo ML, Soler G and
Modolell M: Determination of arginase activity in macrophages: A
micromethod. J Immunol Methods. 174:231–235. 1994. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang XP, Chen YG, Qin WD, Zhang W, Wei SJ,
Wang J, Liu FQ, Gong L, An FS and Zhang Y: Arginase i attenuates
inflammatory cytokine secretion induced by lipopolysaccharide in
vascular smooth muscle cells. Arterioscler Thromb Vasc Biol.
31:1853–1860. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kiss T and Kovacs K, Komocsi A, Tornyos A,
Zalan P, Sumegi B, Gallyas F Jr and Kovacs K: Novel mechanisms of
sildenafil in pulmonary hypertension involving
cytokines/chemokines, MAP kinases and Akt. PLoS One. 9:e1048902014.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Xu W, Kaneko FT, Zheng S, Comhair SA,
Janocha AJ, Goggans T, Thunnissen FB, Farver C, Hazen SL and
Jennings C: Increased arginase ii and decreased no synthesis in
endothelial cells of patients with pulmonary arterial hypertension.
FASEB J. 18:1746–1748. 2004.PubMed/NCBI
|
22
|
Fagan KA, Morrissey B, Fouty BW, Sato K,
Harral JW, Morris KG Jr, Hoedt-Miller M, Vidmar S, McMurtry IF and
Rodman DM: Upregulation of nitric oxide synthase in mice with
severe hypoxia-induced pulmonary hypertension. Respir Res.
2:306–313. 2001. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Champion HC, Bivalacqua TJ, Greenberg SS,
Giles TD, Hyman AL and Kadowitz PJ: Adenoviral gene transfer of
endothelial nitric-oxide synthase (enos) partially restores normal
pulmonary arterial pressure in enos-deficient mice. Proc Natl Acad
Sci USA. 99:13248–13253. 2002. View Article : Google Scholar : PubMed/NCBI
|
24
|
Owens GK: Regulation of differentiation of
vascular smooth muscle cells. Physiol Rev. 75:487–517.
1995.PubMed/NCBI
|
25
|
Kadowaki M, Mizuno S, Demura Y, Ameshima
S, Miyamori I and Ishizaki T: Effect of hypoxia and Beraprost
sodium on human pulmonary arterial smooth muscle cell
proliferation: the role of p27kip1. Respir Res. 8:772007.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Yu L, Quinn DA, Garg HG and Hales CA: Gene
expression of cyclin-dependent kinase inhibitors and effect of
heparin on their expression in mice with hypoxia-induced pulmonary
hypertension. Biochem Biophys Res Commun. 345:1565–1572. 2006.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Dong Y, Sui L, Sugimoto K, Tai Y and
Tokuda M: Cyclin D1-cdk4 complex, a possible critical factor for
cell proliferation and prognosis in laryngeal squamous cell
carcinomas. Int J Cancer. 95:209–215. 2001. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sakamoto K, Ohki K, Saito M, Nakahara T
and Ishii K: Small molecule cyclin-dependent kinase inhibitors
protect against neuronal cell death in the ischemic-reperfused rat
retina. J Ocul Pharmacol Ther. 27:419–425. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Toyoshima H and Hunter T: P27, a novel
inhibitor of g1 cyclin-cdk protein kinase activity, is related to
p21. Cell. 78:67–74. 1994. View Article : Google Scholar : PubMed/NCBI
|