1
|
Asbagh LA, Vazquez I, Vecchione L, et al:
The tyrosine phosphatase PTPRO sensitizes colon cancer cells to
anti-EGFR therapy through activation of SRC-mediated EGFR
signaling. Oncotarget. 5:10070–10083. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lewis BP, Burge CB and Bartel DP:
Conserved seed pairing, often flanked by adenosines, indicates that
thousands of human genes are microRNA targets. Cell. 120:15–20.
2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kato M and Slack FJ: microRNAs: small
molecules with big roles-C. elegans to human cancer. Biol Cell.
100:71–81. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Jansson MD and Lund AH: MicroRNA and
cancer. Mol Oncol. 6:590–610. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Qiu T, Zhou X, Wang J, et al: MiR-145,
miR-133a and miR-133b inhibit proliferation, migration, invasion
and cell cycle progression via targeting transcription factor Sp1
in gastric cancer. FEBS Lett. 588:1168–1177. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wen D, Li S, Ji F, et al: miR-133b acts as
a tumor suppressor and negatively regulates FGFR1 in gastric
cancer. Tumour Biol. 34:793–803. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhao Y, Huang J, Zhang L, et al: MiR-133b
is frequently decreased in gastric cancer and its overexpression
reduces the metastatic potential of gastric cancer cells. BMC
Cancer. 14:342014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhou Y, Wu D, Tao J, Qu P, Zhou Z and Hou
J: MicroRNA-133 inhibits cell proliferation, migration and invasion
by targeting epidermal growth factor receptor and its downstream
effector proteins in bladder cancer. Scand J Urol. 47:423–432.
2013. View Article : Google Scholar
|
9
|
Tao J, Wu D, Xu B, et al: microRNA-133
inhibits cell proliferation, migration and invasion in prostate
cancer cells by targeting the epidermal growth factor receptor.
Oncol Rep. 27:1967–1975. 2012.PubMed/NCBI
|
10
|
Liu L, Shao X, Gao W, et al: MicroRNA-133b
inhibits the growth of non-small-cell lung cancer by targeting the
epidermal growth factor receptor. FEBS J. 279:3800–3812. 2012.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Wu J, Yang T, Li X, et al: Alteration of
serum miR-206 and miR-133b is associated with lung carcinogenesis
induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Toxicol
Appl Pharmacol. 267:238–246. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Akcakaya P, Ekelund S, Kolosenko I, et al:
miR-185 and miR-133b deregulation is associated with overall
survival and metastasis in colorectal cancer. Int J Oncol.
39:311–318. 2011.PubMed/NCBI
|
13
|
Davis NM, Sokolosky M, Stadelman K, et al:
Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast
cancer: possibilities for therapeutic intervention. Oncotarget.
5:4603–4650. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Centuori SM and Martinez JD: Differential
regulation of EGFR-MAPK signaling by deoxycholic acid (DCA) and
ursodeoxycholic acid (UDCA) in colon cancer. Dig Dis Sci.
59:2367–2380. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang F, Xiao W, Sun J, Han D and Zhu Y:
MiRNA-181c inhibits EGFR-signaling-dependent MMP9 activation via
suppressing Akt phosphorylation in glioblastoma. Tumour Biol.
35:8653–8658. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Mlcochova J, Faltejskova P, Nemecek R,
Svoboda M and Slaby O: MicroRNAs targeting EGFR signalling pathway
in colorectal cancer. J Cancer Res Clin Oncol. 139:1615–1624. 2013.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Garofalo M, Romano G, Di Leva G, et al:
EGFR and MET receptor tyrosine kinase-altered microRNA expression
induces tumorigenesis and gefitinib resistance in lung cancers. Nat
Med. 18:74–82. 2011.PubMed/NCBI
|
18
|
Gu YF, Zhang H, Su D, et al: miR-30b and
miR-30c expression predicted response to tyrosine kinase inhibitors
as first line treatment in non-small cell lung cancer. Chin Med J
(Engl). 126:4435–4439. 2013.
|
19
|
Zhou YM, Liu J and Sun W: MiR-130a
overcomes gefitinib resistance by targeting met in non-small cell
lung cancer cell lines. Asian Pac J Cancer Prev. 15:1391–1396.
2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ragusa M, Majorana A, Statello L, et al:
Specific alterations of microRNA transcriptome and global network
structure in colorectal carcinoma after cetuximab treatment. Mol
Cancer Ther. 9:3396–3409. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Calin GA and Croce CM: MicroRNA signatures
in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Nielsen S, Scheele C, Yfanti C, et al:
Muscle specific microRNAs are regulated by endurance exercise in
human skeletal muscle. J Physiol. 588:4029–4037. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Novello C, Pazzaglia L, Cingolani C, et
al: miRNA expression profile in human osteosarcoma: role of miR-1
and miR-133b in proliferation and cell cycle control. Int J Oncol.
42:667–675. 2013.
|
24
|
Kano M, Seki N, Kikkawa N, et al: miR-145,
miR-133a and miR-133b: Tumor-suppressive miRNAs target FSCN1 in
esophageal squamous cell carcinoma. Int J Cancer. 127:2804–2814.
2010. View Article : Google Scholar
|
25
|
Qin W, Dong P, Ma C, et al: MicroRNA-133b
is a key promoter of cervical carcinoma development through the
activation of the ERK and AKT1 pathways. Oncogene. 31:4067–4075.
2012. View Article : Google Scholar
|