1
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ferlay J, Shin HR, Bray F, Forman D,
Mathers C and Parkin DM: Estimates of worldwide burden of cancer in
2008: GLOBOCAN 2008. Int J Cancer. 127:2893–2917. 2010. View Article : Google Scholar
|
3
|
Wang N, Li P, Wang Y, Peng W, Wu Z, Tan S,
Liang S, Shen X and Su W: Hepatoprotective effect of Hypericum
japonicum extract and its fractions. J Ethnopharmacol. 116:1–6.
2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang XW, Zhang DW, Wei XL, et al: Advances
in research on Hypericum japonicum. Chin J Mod Drug Appl.
3:183–185. 2009.In Chinese.
|
5
|
Shen YZ, Zhang XC and Tang WZ: Advances in
research on Hypericum japonicum of its chemical components and
pharmacological activities. Shangdong Pharm Ind. 22:28–29. 2003.In
Chinese.
|
6
|
Sun ZY, Jin GJ, Xu T, et al: Analysis of
30 patients of Primary Liver Cancer treated by Hypericum japonicum
thunb. Chin J Integr Trad Western Med Liver Dis. 5:29–30. 1995.In
Chinese.
|
7
|
Li QX, Peng RX and Gao P: Hepatoprotective
effect of Tianjihuang injection against APAP-induced hepatic
toxicity in mice. Chin Pharm J. 27:472–474. 1992.In Chinese.
|
8
|
Dong J, Liu Y, Liang Z and Wang W:
Investigation on ultrasound-assisted extraction of salvianolic acid
B from Salvia miltiorrhiza root. Ultrason Sonochem. 17:61–65. 2010.
View Article : Google Scholar
|
9
|
Guide for the Care and Use of Laboratory
Animals; National Research Council (US) Institute of Animal
Research: National Academies Press (US); Washington (DC), USA:
1996
|
10
|
Chang A, Cai Z, Wang Z and Sun S:
Extraction and isolation of alkaloids of Sophora alopecuroides and
their anti-tumor effects in H22 tumor-bearing mice. Afr J Tradit
Complement Altern Med. 11:245–248. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gao L, Chen L, Fei XH, Qiu HY, Zhou H and
Wang JM: STI571 combined with vincristine greatly suppressed the
tumor formation of multidrug-resistant K562 cells in a human-nude
mice xenograft model. Chin Med J (Engl). 119:911–918. 2006.
|
12
|
Jin Y, Li J, Rong LF, Li YH, Guo L and Xu
SY: Anti-hepatocarcinoma effects of 5-fluorouracil encapsulated by
galactosylceramide liposomes in vivo and in vitro. World J
Gastroenterol. 11:2643–2646. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chen H, Takahashi S, Imamura M, Okutani E,
Zhang ZG, Chayama K and Chen BA: Earthworm fibrinolytic enzyme:
Anti-tumor activity on human hepatoma cells in vitro and in vivo.
Chin Med J (Engl). 120:898–904. 2007.
|
14
|
Chipuk JE and Green DR: How do BCL-2
proteins induce mitochondrial outer membrane permeabilization?
Trends Cell Biol. 18:157–164. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Arnoult D: Apoptosis-associated
mitochondrial outer membrane permeabilization assays. Methods.
44:229–234. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Souers AJ, Leverson JD, Boghaert ER,
Ackler SL, Catron ND, Chen J, Dayton BD, Ding H, Enschede SH,
Fairbrother WJ, et al: ABT-199, a potent and selective BCL-2
inhibitor, achieves antitumor activity while sparing platelets. Nat
Med. 19:202–208. 2013. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Ma Y, Zhang A, Shi Z, He C, Ding J, Wang
X, Ma J and Zhang H: A mitochondria-mediated apoptotic pathway
induced by deoxynivalenol in human colon cancer cells. Toxicol In
Vitro. 26:414–420. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lütticken C, Wegenka UM, Yuan J, Buschmann
J, Schindler C, Ziemiecki A, Harpur AG, Wilks AF, Yasukawa K, Taga
T, et al: Association of transcription factor APRF and protein
kinase Jak1 with the interleukin-6 signal transducer gp130.
Science. 263:89–92. 1994. View Article : Google Scholar : PubMed/NCBI
|
19
|
Elmore S: Apoptosis: A review of
programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kotwicka M, Filipiak K, Jedrzejczak P and
Warchol JB: Caspase-3 activation and phosphatidylserine membrane
trans-location in human spermatozoa: is there a relationship?
Reprod Biomed Online. 16:657–663. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
David R: Apoptosis: A lipid trigger of
MOMP. Nat Rev Mol Cell Biol. 13:208–209. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ly JD, Grubb DR and Lawen A: The
mitochondrial membrane potential (deltapsi(m)) in apoptosis; an
update. Apoptosis. 8:115–128. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sesso A: Pitfalls in the use of electron
microscopy to study the mitochondrial membrane permeability
transition in apoptotic cells and pellets: Where do we stand in
relation to the incidence of mitochondrial swelling in apoptosis?
Braz J Morphol Sci. 23:57–74. 2006.
|
24
|
Adams JM and Cory S: The Bcl-2 apoptotic
switch in cancer development and therapy. Oncogene. 26:1324–1337.
2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Shamas-Din A, Kale J, Leber B and Andrews
DW: Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb
Perspect Biol. 5:a0087142013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Bishayee K, Ghosh S, Mukherjee A,
Sadhukhan R, Mondal J and Khuda-Bukhsh AR: Quercetin induces
cytochrome-c release and ROS accumulation to promote apoptosis and
arrest the cell cycle in G2/M, in cervical carcinoma: Signal
cascade and drug-DNA interaction. Cell Prolif. 46:153–163. 2013.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Smerage JB, Budd GT, Doyle GV, Brown M,
Paoletti C, Muniz M, Miller MC, Repollet MI, Chianese DA, Connelly
MC, et al: Monitoring apoptosis and Bcl-2 on circulating tumor
cells in patients with metastatic breast cancer. Mol Oncol.
7:680–692. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Thomas S, Quinn BA, Das SK, Dash R, Emdad
L, Dasgupta S, Wang XY, Dent P, Reed JC, Pellecchia M, et al:
Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther
Targets. 17:61–75. 2013. View Article : Google Scholar
|
29
|
Brentnall M, Rodriguez-Menocal L, De
Guevara RL, Cepero E and Boise LH: Caspase-9, caspase-3 and
caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell
Bio. 14:322013. View Article : Google Scholar
|
30
|
Cohen GM: Caspases: The executioners of
apoptosis. Biochem J. 326:1–16. 1997. View Article : Google Scholar : PubMed/NCBI
|