1
|
Karlén P, Kornfeld D, Broström O, Löfberg
R, Persson PG and Ekbom A: Is colonoscopic surveillance reducing
colorectal cancer mortality in ulcerative colitis? A population
based case control study. Gut. 42:711–714. 1998. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kisiel JB, Garrity-Park MM, Taylor WR,
Smyrk TC and Ahlquist DA: Methylated eyes absent 4 (EYA4) gene
promotor in non-neoplastic mucosa of ulcerative colitis patients
with colorectal cancer: Evidence for a field effect. Inflamm Bowel
Dis. 19:2079–2083. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Watanabe T, Konishi T, Kishimoto J, Kotake
K, Muto T and Sugihara K; Japanese Society for Cancer of the Colon
and Rectum: Ulcerative colitis-associated colorectal cancer shows a
poorer survival than sporadic colorectal cancer: A nationwide
Japanese study. Inflamm Bowel Dis. 17:802–808. 2011. View Article : Google Scholar
|
4
|
Bardelli A and Siena S: Molecular
mechanisms of resistance to cetuximab and panitumumab in colorectal
cancer. J Clin Oncol. 28:1254–1261. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Saleh M and Trinchieri G: Innate immune
mechanisms of colitis and colitis-associated colorectal cancer. Nat
Rev Immunol. 11:9–20. 2011. View
Article : Google Scholar
|
6
|
Fearon ER: Molecular genetics of
colorectal cancer. Ann Rev Pathol. 6:479–507. 2011. View Article : Google Scholar
|
7
|
Suzuki H, Gabrielson E, Chen W, Anbazhagan
R, van Engeland M, Weijenberg MP, Herman JG and Baylin SB: A
genomic screen for genes upregulated by demethylation and histone
deacetylase inhibition in human colorectal cancer. Nat Genet.
31:141–149. 2002. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Cancer Genome Atlas Network: Comprehensive
molecular characterization of human colon and rectal cancer.
Nature. 487:330–337. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Vinayagam A, Zirin J, Roesel C, Hu Y,
Yilmazel B, Samsonova AA, Neumüller RA, Mohr SE and Perrimon N:
Integrating protein-protein interaction networks with phenotypes
reveals signs of interactions. Nat Methods. 11:94–99. 2014.
View Article : Google Scholar
|
10
|
Calvano SE, Xiao W, Richards DR, Felciano
RM, Baker HV, Cho RJ, Chen RO, Brownstein BH, Cobb JP, Tschoeke SK,
et al: A network-based analysis of systemic inflammation in humans.
Nature. 437:1032–1037. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Goffard N and Weiller G: PathExpress: A
web-based tool to identify relevant pathways in gene expression
data. Nucleic Acids Res. 35:W176–W181. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chuang HY, Lee E, Liu YT, Lee D and Ideker
T: Network-based classification of breast cancer metastasis. Mol
Syst Biol. 3:1402007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nepusz T, Yu H and Paccanaro A: Detecting
overlapping protein complexes in protein-protein interaction
networks. Nat Methods. 9:471–472. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Winterhalter C, Widera P and Krasnogor N:
JEPETTO: A cytoscape plugin for gene set enrichment and topological
analysis based on interaction networks. Bioinformatics.
30:1029–1030. 2014. View Article : Google Scholar :
|
15
|
Chuang HY, Hofree M and Ideker T: A decade
of systems biology. Annu Rev Cell Dev Biol. 26:721–744. 2010.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Pržulj N, Wigle DA and Jurisica I:
Functional topology in a network of protein interactions.
Bioinformatics. 20:340–348. 2004. View Article : Google Scholar
|
17
|
Wu F, Dassopoulos T, Cope L, Maitra A,
Brant SR, Harris ML, Bayless TM, Parmigiani G and Chakravarti S:
Genome-wide gene expression differences in Crohn's disease and
ulcerative colitis from endoscopic pinch biopsies: insights into
distinctive pathogenesis. Inflamm Bowel Dis. 13:807–821. 2007.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Planell N, Lozano JJ, Mora-Buch R,
Masamunt MC, Jimeno M, Ordás I, Esteller M, Ricart E, Piqué JM,
Panés J, et al: Transcriptional analysis of the intestinal mucosa
of patients with ulcerative colitis in remission reveals lasting
epithelial cell alterations. Gut. 62:967–976. 2013. View Article : Google Scholar
|
19
|
Sheffer M, Bacolod MD, Zuk O, Giardina SF,
Pincas H, Barany F, Paty PB, Gerald WL, Notterman DA and Domany E:
Association of survival and disease progression with chromosomal
instability: a genomic exploration of colorectal cancer. Proc Natl
Acad Sci USA. 106:7131–7136. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Galamb O, Spisák S, Sipos F, Tóth K,
Solymosi N, Wichmann B, Krenács T, Valcz G, Tulassay Z and Molnár
B: Reversal of gene expression changes in the colorectal
normal-adenoma pathway by NS398 selective COX2 inhibitor. Br J
Cancer. 102:765–773. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ancona N, Maglietta R, Piepoli A,
D'Addabbo A, Cotugno R, Savino M, Liuni S, Carella M, Pesole G and
Perri F: On the statistical assessment of classifiers using DNA
microarray data. BMC Bioinformatics. 7:3872006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liu W, Peng Y and Tobin DJ: A new 12-gene
diagnostic biomarker signature of melanoma revealed by integrated
microarray analysis. Peer J. 1:e492013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Smyth GK: Limma: Linear models for
microarray data. Bioinformatics and computational biology solutions
using R and Bioconductor. Statistics for Biology and Health.
Gentleman, et al: Springer; New York, NY: pp. 397–420. 2005,
View Article : Google Scholar
|
24
|
Diboun I, Wernisch L, Orengo CA and
Koltzenburg M: Microarray analysis after RNA amplification can
detect pronounced differences in gene expression using limma. BMC
Genomics. 7:2522006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Da Wei Huang BTS and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2008. View Article : Google Scholar
|
26
|
Zhang B, Kirov S and Snoddy J: WebGestalt:
An integrated system for exploring gene sets in various biological
contexts. Nucleic Acids Res. 33:W741–W748. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang J, Duncan D, Shi Z and Zhang B:
WEB-based GEne SeT AnaLysis toolkit (WebGestalt): Update 2013.
Nucleic Acids Res. 41:W77–W83. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ferreira J and Zwinderman A: On the
Benjamini-Hochberg method. Ann Statistics. 34:1827–1849. 2006.
View Article : Google Scholar
|
29
|
Smoot ME, Ono K, Ruscheinski J, Wang PL
and Ideker T: Cytoscape 2.8: New features for data integration and
network visualization. Bioinformatics. 27:431–432. 2011. View Article : Google Scholar :
|
30
|
Wasserman S and Katherin Faust: Social
Network Analysis: Methods and Applications. 1st edition. Cambridge
University Press; Cambridge: 1994, View Article : Google Scholar
|
31
|
Altman NS: Differential expression
analysis using LIMMA. 2013
|
32
|
Kanehisa M and Goto S: KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30.
2000. View Article : Google Scholar
|
33
|
Gillen CD, Walmsley RS, Prior P, Andrews H
and Allan RN: Ulcerative colitis and Crohn's disease: A comparison
of the colorectal cancer risk in extensive colitis. Gut.
35:1590–1592. 1994. View Article : Google Scholar : PubMed/NCBI
|
34
|
Loftus EV Jr, Harewood GC, Loftus CG,
Tremaine WJ, Harmsen WS, Zinsmeister AR, Jewell DA and Sandborn WJ:
PSC-IBD: A unique form of inflammatory bowel disease associated
with primary sclerosing cholangitis. Gut. 54:91–96. 2005.
View Article : Google Scholar
|
35
|
Askling J, Dickman PW, Karlén P, Broström
O, Lapidus A, Löfberg R and Ekbom A: Family history as a risk
factor for colorectal cancer in inflammatory bowel disease.
Gastroenterology. 120:1356–1362. 2001. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wheeler JM, Kim HC, Efstathiou JA, Ilyas
M, Mortensen NJ and Bodmer WF: Hypermethylation of the promoter
region of the E-cadherin gene (CDH1) in sporadic and ulcerative
colitis associated colorectal cancer. Gut. 48:367–371. 2001.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Min M, Peng LH, Sun G, Guo MZ, Qiu ZW and
Yang YS: Aquaporin 8 expression is reduced and regulated by
microRNAs in patients with ulcerative colitis. Chin Med J.
126:1532–1537. 2013.PubMed/NCBI
|
38
|
Watanabe T, Kobunai T, Yamamoto Y, Ikeuchi
H, Matsuda K, Ishihara S, Nozawa K, Iinuma H, Kanazawa T, Tanaka T,
et al: Predicting ulcerative colitis-associated colorectal cancer
using reverse-transcription polymerase chain reaction analysis.
Clin Colorectal Cancer. 10:134–141. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Rutter M, Saunders B, Wilkinson K, Rumbles
S, Schofield G, Kamm M, Williams C, Price A, Talbot I and Forbes A:
Severity of inflammation is a risk factor for colorectal neoplasia
in ulcerative colitis. Gastroenterology. 126:451–459. 2004.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Rosenberg GA, Mun-Bryce S, Wesley M and
Kornfeld M: Collagenase-induced intracerebral hemorrhage in rats.
Stroke. 21:801–807. 1990. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ikeda S, Kong SW, Lu J, Bisping E, Zhang
H, Allen PD, Golub TR, Pieske B and Pu WT: Altered microRNA
expression in human heart disease. Physiol Genomics. 31:367–373.
2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
O'Connell RM, Rao DS and Baltimore D:
microRNA regulation of inflammatory responses. Annu Rev Immunol.
30:295–312. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Cummins JM, He Y, Leary RJ, Pagliarini R,
Diaz LA Jr, Sjoblom T, Barad O, Bentwich Z, Szafranska AE,
Labourier E, et al: The colorectal microRNAome. Proc Natl Acad Sci
USA. 103:3687–3692. 2006. View Article : Google Scholar : PubMed/NCBI
|
44
|
Wen Z, Liu ZP, Liu Z, Zhang Y and Chen L:
An integrated approach to identify causal network modules of
complex diseases with application to colorectal cancer. J Am Med
Inform Assoc. 20:659–667. 2013. View Article : Google Scholar :
|
45
|
Jonsson PF, Cavanna T, Zicha D and Bates
PA: Cluster analysis of networks generated through homology:
Automatic identification of important protein communities involved
in cancer metastasis. BMC Bioinformatics. 7:22006. View Article : Google Scholar : PubMed/NCBI
|
46
|
Srihari S and Ragan MA: Systematic
tracking of dysregulated modules identifies novel genes in cancer.
Bioinformatics. 29:1553–1561. 2013. View Article : Google Scholar : PubMed/NCBI
|
47
|
Estrada E: Virtual identification of
essential proteins within the protein interaction network of yeast.
Proteomics. 6:35–40. 2006. View Article : Google Scholar
|
48
|
Ploug M, Gårdsvoll H, Jørgensen TJ,
Lønborg Hansen L and Danø K: Structural analysis of the interaction
between urokinase- type plasminogen activator and its receptor: a
potential target for anti-invasive cancer therapy. Biochem Soc
Trans. 30:177–183. 2002. View Article : Google Scholar : PubMed/NCBI
|
49
|
Finckh U, Van Hadeln K, Müller-Thomsen T,
Alberici A, Binetti G, Hock C, Nitsch RM, Stoppe G, Reiss J and Gal
A: Association of late-onset Alzheimer disease with a genotype of
PLAU, the gene encoding urokinase-type plasminogen activator on
chromosome 10q22. 2. Neurogenetics. 4:213–217. 2003. View Article : Google Scholar : PubMed/NCBI
|
50
|
Opsahl T, Agneessens F and Skvoretz J:
Node centrality in weighted networks: Generalizing degree and
shortest paths. Soc Networks. 32:245–251. 2010. View Article : Google Scholar
|
51
|
Ai J, Zhao H, Carley KM, Su Z and Li H:
Neighbor vector centrality of complex networks based on neighbors
degree distribution. Euro Phys J B. 86:1–7. 2013. View Article : Google Scholar
|
52
|
Kapoor K, Sharma D and Srivastava J:
Weighted node degree centrality for hypergraphs. Proceedings of the
2013 IEEE 2nd International Network Science Workshop; Westpoint,
NY, USA. pp. 152–155. 2013
|