1
|
Raimondi S, Maisonneuve P and Lowenfels
AB: Epidemiology of pancreatic cancer: An overview. Nat Rev
Gastroenterol Hepatol. 6:699–708. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Steele CW, Jamieson NB, Evans TR, McKay
CJ, Sansom OJ, Morton JP and Carter CR: Exploiting inflammation for
therapeutic gain in pancreatic cancer. Br J Cancer. 108:997–1003.
2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jemal A, Siegel R, Ward E, Hao Y, Xu J and
Thun MJ: Cancer statistics. CA Cancer J Clin. 59:225–249. 2009.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Cooper CL, O'Toole SA and Kench JG:
Classification, morphology and molecular pathology of premalignant
lesions of the pancreas. Pathology. 45:286–304. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Alexakis N, Halloran C, Raraty M, Ghaneh
P, Sutton R and Neoptolemos JP: Current standards of surgery for
pancreatic cancer. Br J Surg. 91:1410–1427. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lin Y, Yagyu K, Egawa N, Ueno M, Mori M,
Nakao H, Ishii H, Nakamura K, Wakai K, Hosono S, et al: An overview
of genetic polymorphisms and pancreatic cancer risk in molecular
epide-miologic studies. J Epidemiol. 21:2–12. 2011. View Article : Google Scholar
|
7
|
Nitsche C, Simon P, Weiss FU, Fluhr G,
Weber E, Gärtner S, Behn CO, Kraft M, Ringel J, Aghdassi A, et al:
Environmental risk factors for chronic pancreatitis and pancreatic
cancer. Dig Dis. 29:235–242. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Iacobuzio-Donahue CA, Velculescu VE,
Wolfgang CL and Hruban RH: The genetic basis of pancreas cancer
development and progression: Insights from whole-exome and
whole-genome sequencing. Clin Cancer Res. 18:4257–4265. 2012.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Jones S, Zhang X, Parsons DW, Lin JC,
Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, et
al: Core signaling pathways in human pancreatic cancers revealed by
global genomic analyses. Science. 321:1801–1806. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Petersen GM, de Andrade M, Goggins M,
Hruban RH, Bondy M, Korczak JF, Gallinger S, Lynch HT, Syngal S,
Rabe KG, et al: Pancreatic cancer genetic epidemiology consortium.
Cancer Epidemiol Biomarkers Prev. 15:704–710. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Klein AP, Brune KA, Petersen GM, Hruban
RH, Bondy M, Korczak JF, Gallinger S, Lynch HT, Syngal S, Rabe KG,
et al: Prospective risk of pancreatic cancer in familial pancreatic
cancer kindreds. Cancer Res. 64:2634–2638. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Shi C, Hruban RH and Klein AP: Familial
pancreatic cancer. Arch Pathol Lab Med. 133:365–374.
2009.PubMed/NCBI
|
13
|
Siveke JT, Einwächter H, Sipos B,
Lubeseder-Martellato C, Klöppel G and Schmid RM: Concomitant
pancreatic activation of Kras (G12D) and Tgfa results in cystic
papillary neoplasms reminiscent of human IPMN. Cancer Cell.
12:266–279. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ma J, Sawai H, Ochi N, Matsuo Y, Xu D,
Yasuda A, Takahashi H, Wakasugi T and Takeyama H: PTEN regulates
angiogenesis through PI3K/Akt/VEGF signaling pathway in human
pancreatic cancer cells. Mol Cell Biochem. 331:161–171. 2009.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Mihaljevic AL, Michalski CW, Friess H and
Kleeff J: Molecular mechanism of pancreatic cancer-understanding
proliferation, invasion and metastasis. Langenbecks Arch Surg.
395:295–308. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ikebe M, Kitaura Y, Nakamura M, Tanaka H,
Yamasaki A, Nagai S, Wada J, Yanai K, Koga K, Sato N, et al:
Lipopolysaccharide (LPS) increases the invasive Aability of
pancreatic cancer cells through the TLR4/MyD88 signaling pathway. J
Surg Oncol. 100:725–731. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Mai CW, Kang YB and Pichika MR: Should a
Toll-like receptor 4 (TLR-4) agonist or antagonist be designed to
treat cancer? TLR-4: its expression and effects in the ten most
common cancers. Onco Targets Ther. 6:1573–1587. 2013.PubMed/NCBI
|
18
|
Ochi A, Graffeo CS, Zambirinis CP,
Zambirinis CP, Rehman A, Hackman M, Fallon N, Barilla RM, Henning
JR, Jamal M, et al: Toll-like receptor 7 regulates pancreatic
carcinogenesis in mice and humans. J Clin Invest. 122:4118–4129.
2012. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Olivier M: Host-pathogen interaction:
Culprit within a culprit. Nature. 471:173–174. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhu J, Lai K, Brownile R, Babiuk LA and
Mutwiri GK: Porcine TLR8 and TLR7 are both activated by a selective
TLR7 ligand, imiquimod. Mol Immunol. 45:3238–3243. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Shojaei H, Oberg HH, Juricke M, Marischen
L, Kunz M, Mundhenke C, Gieseler F, Kabelitz D and Wesch D:
Toll-like Receptors 3 and 7 Agonists Enhance Tumor Cell T Cells
Lysis by Human. Cancer Res. 69:8710–8717. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kutikhin AG: Association of polymorphisms
in TLR genes and in genes of the Toll-like receptor signaling
pathway with cancer risk. Hum Immunol. 72:1095–1116. 2011.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Schwartz MJ, Liu H, Hwang DH, Kawamoto H
and Scherr DS: Antitumor effects of an imidazoquinoline in renal
cell carcinoma. Urology. 73:1156–1162. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu H, Schwartz MJ, Hwang DH and Scherr
DS: Tumour growth inhibition by an imidazoquinoline is associated
with c-Myc down-regulation in urothelial cell carcinoma. BJU Int.
101:894–901. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Funderburg N, Luciano AA, Jiang W,
Rodriguez B, Sieg SF and Lederman MM: Toll-like receptor ligands
induce human T cell activation and death, a model for HIV
pathogenesis. PLoS One. 3:e19152008. View Article : Google Scholar : PubMed/NCBI
|
26
|
François S, El Benna J, Dang PM, Pedruzzi
E, Gougerot-Pocidalo MA and Elbim C: Inhibition of neutrophil
apoptosis by TLR agonists in whole blood: involvement of the
phosphoinositide3-kinase/Akt and NF-kappaB signaling pathways,
leading to increased levels of Mcl-1, A1 and phosphorylated Bad. J
Immunol. 174:3633–3642. 2005. View Article : Google Scholar
|
27
|
Hammadi A, Billard C, Faussat AM and Kolb
JP: Stimulation of iNOS expression and apoptosis resistance in
B-cell chronic lymphocytic leukemia (B-CLL) cells through
engagement of Toll-like receptor 7 (TLR-7) and NF-kappaB
activation. Nitric Oxide. 19:138–145. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zambirinis CP and Miller G: Signaling via
MYD88 in the pancreatic tumor microenvironment. Oncoimmunology.
2:e225672013. View Article : Google Scholar
|
29
|
Li L, Cheng FW, Wang F, Jia B, Luo X and
Zhang SQ: The activation of TLR7 regulates the expression of VEGF,
TIMP1, MMP2, IL-6 and IL-15 in Hela cells. Mol Cell Biochem.
389:43–49. 2014. View Article : Google Scholar
|
30
|
Bosetti C, Bertuccio P, Negri E, La
Vecchia C, Zeegers MP and Boffetta P: Pancreatic cancer: overview
of descriptive epidemiology. Mol Carcinog. 51:3–13. 2012.
View Article : Google Scholar
|
31
|
Schwartz MJ, Liu H, Hwang DH, Kawamoto H
and Scherr DS: Antitumor effects of an imidazoquinoline in renal
cell carcinoma. Urology. 73:1156–1162. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sasi N, Hwang M, Jaboin J, Csiki I and Lu
B: L Regulated cell death pathways: new twists in modulation of
BCL2 family function. Mol Cancer Ther. 8:1421–1429. 2009.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Pietrantonio F, Biondani P, Ciurlia E,
Fanetti G, Tessari A, Bertarelli G, Bossi I, Musella V, Melotti F,
Di Bartolomeo M, et al: Role of BAX for outcome prediction in
gastrontestinal malignancies. Med Oncol. 30:6102013. View Article : Google Scholar
|
34
|
Rubenstein M, Hollowell CM and Guinan P:
Differentiated prostatic antigen expression in cells following
treatment with bispecific antisense oligonucleotides directed
against BCL-2 and EGFR. Med Oncol. 29:835–841. 2012. View Article : Google Scholar
|