1
|
Benfey PN: Molecular biology: Microrna is
here to stay. Nature. 425:244–245. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chen LH, Tsai KL, Chen YW, Yu CC, Chang
KW, Chiou SH, Ku HH, Chu PY, Tseng LM and Huang PI: Microrna as a
novel modulator in head and neck squamous carcinoma. J Oncol.
2010:1356322010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ozata DM, Caramuta S, Velazquez-Fernandez
D, Akcakaya P, Xie H, Hoog A, Zedenius J, Backdahl M, Larsson C and
Lui WO: The role of microrna deregulation in the pathogenesis of
adrenocortical carcinoma. Endocr Relat Cancer. 18:643–655. 2011.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Guo Z, Chi F, Song Y, Wang C, Yu R, Wei T,
Gui J and Zhu X: Transcriptome analysis of murine thymic epithelial
cells reveals ageassociated changes in microrna expression. Int J
Mol Med. 32:835–842. 2013.PubMed/NCBI
|
5
|
Santosh PS, Arora N, Sarma P, Pal-Bhadra M
and Bhadra U: Interaction map and selection of microrna targets in
parkinson's disease-related genes. J Biomed Biotechnol.
3631452009.
|
6
|
Sheinerman KS and Umansky SR: Circulating
cell-free microrna as biomarkers for screening, diagnosis and
monitoring of neurodegenerative diseases and other neurologic
pathologies. Front Cell Neurosci. 7:1502013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ai J, Sun LH, Che H, Zhang R, Zhang TZ, Wu
WC, Su XL, Chen X, Yang G, Li K, et al: Microrna-195 protects
against dementia induced by chronic brain hypoperfusion via its
anti-amyloidogenic effect in rats. J Neurosci. 33:3989–4001. 2013.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Men D, Liang Y and Chen L: Decreased
expression of microrna-200b is an independent unfavorable
prognostic factor for glioma patients. Cancer Epidemiol.
38:152–156. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Liu C, Zhou C, Gao F, Cai S, Zhang C, Zhao
L, Zhao F, Cao F, Lin J, Yang Y, et al: Mir-34a in age and tissue
related radio-sensitivity and serum mir-34a as a novel indicator of
radiation injury. Int J Biol Sci. 7:221–233. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Boon RA, Iekushi K, Lechner S, Seeger T,
Fischer A, Heydt S, Kaluza D, Treguer K, Carmona G, Bonauer A, et
al: Microrna-34a regulates cardiac ageing and function. Nature.
495:107–110. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Li L, Yuan L, Luo J, Gao J, Guo J and Xie
X: Mir-34a inhibits proliferation and migration of breast cancer
through down-regulation of bcl-2 and sirt1. Clin Exp Med.
13:109–117. 2013. View Article : Google Scholar
|
12
|
Tomosugi M, Sowa Y, Yasuda S, Tanaka R, Te
RH, Ikawa H, Koyama M and Sakai T: Retinoblastoma gene-independent
g1 phase arrest by flavone, phosphatidylinositol 3-kinase inhibitor
and histone deacetylase inhibitor. Cancer Sci. 103:2139–2143. 2012.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Bommer GT, Gerin I, Feng Y, Kaczorowski
AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, et al:
P53-mediated activation of mirna34 candidate tumor-suppressor
genes. Curr Biol. 17:1298–1307. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Matsushita N, Takami Y, Kimura M, Tachiiri
S, Ishiai M, Nakayama T and Takata M: Role of nad-dependent
deacetylases sirt1 and sirt2 in radiation and cisplatin-induced
cell death in vertebrate cells. Genes Cells. 10:321–332. 2005.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Castro RE, Ferreira DM, Afonso MB,
Borralho PM, Machado MV, Cortez-Pinto H and Rodrigues CM:
Mir-34a/sirt1/p53 is suppressed by ursodeoxycholic acid in the rat
liver and activated by disease severity in human non-alcoholic
fatty liver disease. J Hepatol. 58:119–125. 2013. View Article : Google Scholar
|
16
|
Attiah DG, Kopher RA and Desai TA:
Characterization of pc12 cell proliferation and
differentiation-stimulated by ecm adhesion proteins and
neurotrophic factors. J Mater Sci Mater Med. 14:1005–1009. 2003.
View Article : Google Scholar
|
17
|
Leoni C, Menegon A, Benfenati F, Toniolo
D, Pennuto M and Valtorta F: Neurite extension occurs in the
absence of regulated exocytosis in pc12 subclones. Mol Biol Cell.
10:2919–2931. 1999. View Article : Google Scholar : PubMed/NCBI
|
18
|
Taupenot L: Analysis of regulated
secretion using pc12 cells. Curr Protoc Cell Biol. 15:12–15.
2007.
|
19
|
Martin D, Salinas M, Lopez-Valdaliso R,
Serrano E, Recuero M and Cuadrado A: Effect of the alzheimer
amyloid fragment abeta (25–35) on akt/pkb kinase and survival of
pc12 cells. J Neurochem. 78:1000–1008. 2001. View Article : Google Scholar
|
20
|
Zhang ZT, Cao XB, Xiong N, Wang HC, Huang
JS, Sun SG and Wang T: Morin exerts neuroprotective actions in
parkinson disease models in vitro and in vivo. Acta Pharmacol Sin.
31:900–906. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hermeking H: The mir-34 family in cancer
and apoptosis. Cell Death Differ. 17:193–199. 2010. View Article : Google Scholar
|
22
|
Zhang C, Mo R, Yin B, Zhou L, Liu Y and
Fan J: Tumor suppressor microrna-34a inhibits cell proliferation by
targeting notch1 in renal cell carcinoma. Oncol Lett. 7:1689–1694.
2014.PubMed/NCBI
|
23
|
Aranha MM, Santos DM, Xavier JM, Low WC,
Steer CJ, Sola S and Rodrigues CM: Apoptosis-associated micrornas
are modulated in mouse, rat and human neural differentiation. BMC
Genomics. 11:5142010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yamakuchi M: Microrna regulation of sirt1.
Front Physiol. 3:682012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Nogueiras R, Habegger KM, Chaudhary N,
Finan B, Banks AS, Dietrich MO, Horvath TL, Sinclair DA, Pfluger PT
and Tschop MH: Sirtuin 1 and sirtuin 3: Physiological modulators of
metabolism. Physiol Rev. 92:1479–1514. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kim D, Nguyen MD, Dobbin MM, Fischer A,
Sananbenesi F, Rodgers JT, Delalle I, Baur JA, Sui G, Armour SM, et
al: SIRT1 deacetylase protects against neurodegeneration in models
for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J.
26:3169–3179. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ye J, Liu Z, Wei J, Lu L, Huang Y, Luo L
and Xie H: Protective effect of sirt1 on toxicity of
microglial-derived factors induced by lps to pc12 cells via the
p53-caspase-3-dependent apoptotic pathway. Neurosci Lett.
553:72–77. 2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu TX, Howlett NG, Deng M, Langenau DM,
Hsu K, Rhodes J, Kanki JP, D'Andrea AD and Look AT: Knockdown of
zebrafish fancd2 causes developmental abnormalities via
p53-dependent apoptosis. Dev Cell. 5:903–914. 2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Potts MB, Vaughn AE, McDonough H,
Patterson C and Deshmukh M: Reduced apaf-1 levels in cardiomyocytes
engage strict regulation of apoptosis by endogenous xiap. J Cell
Biol. 171:925–930. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bitterman KJ, Anderson RM, Cohen HY,
Latorre-Esteves M and Sinclair DA: Inhibition of silencing and
accelerated aging by nicotinamide, a putative negative regulator of
yeast sir2 and human sirt1. J Biol Chem. 277:45099–45107. 2002.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Hori YS, Kuno A, Hosoda R and Horio Y:
Regulation of foxos and p53 by sirt1 modulators under oxidative
stress. PLoS One. 8:e738752013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sun MF, Chang TT, Chang KW, Huang HJ, Chen
HY, Tsai FJ, Lin JG and Chen CY: Blocking the dna repair system by
traditional chinese medicine? J Biomol Struct Dyn. 28:895–906.
2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Solomon JM, Pasupuleti R, Xu L, McDonagh
T, Curtis R, DiStefano PS and Huber LJ: Inhibition of sirt1
catalytic activity increases p53 acetylation but does not alter
cell survival following dna damage. Mol Cell Biol. 26:28–38. 2006.
View Article : Google Scholar :
|
34
|
Tavernarakis N, Pasparaki A, Tasdemir E,
Maiuri MC and Kroemer G: The effects of p53 on whole organism
longevity are mediated by autophagy. Autophagy. 4:870–873. 2008.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Maiuri MC, Malik SA, Morselli E, Kepp O,
Criollo A, Mouchel PL, Carnuccio R and Kroemer G: Stimulation of
autophagy by the p53 target gene sestrin2. Cell Cycle. 8:1571–1576.
2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bloom GS: Amyloid-beta and tau: the
trigger and bullet in alzheimer disease pathogenesis. JAMA Neurol.
71:505–508. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Sun Q, Jia N, Wang W, Jin H, Xu J and Hu
H: Activation of sirt1 by curcumin blocks the neurotoxicity of
amyloid-beta25-35 in rat cortical neurons. Biochem Biophys Res
Commun. 448:89–94. 2014. View Article : Google Scholar : PubMed/NCBI
|