1
|
Wrighten SA, Piroli GG, Grillo CA and
Reagan LP: A look inside the diabetic brain: Contributors to
diabetes-induced brain aging. Biochim Biophys Acta. 1792:444–453.
2009. View Article : Google Scholar
|
2
|
Mijnhout GS, Scheltens P, Diamant M,
Biessels GJ, Wessels AM, Simsek S, Snoek FJ and Heine RJ: Diabetic
encephalopathy: A concept in need of a definition. Diabetologia.
49:1447–1448. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kwon KJ, Lee EJ, Kim MK, Kim SY, Kim JN,
Kim JO, Kim HJ, Kim HY, Han JS, Shin CY, et al: Diabetes augments
cognitive dysfunction in chronic cerebral hypoperfusion by
increasing neuronal cell death: Implication of cilostazol for
diabetes mellitus-induced dementia. Neurobiol Dis. 73:12–23. 2015.
View Article : Google Scholar
|
4
|
Dai J, Chen L, Qiu YM, Li SQ, Xiong WH,
Yin YH, Jia F and Jiang JY: Activations of GABAergic signaling,
HSP70 and MAPK cascades are involved in baicalin's neuroprotection
against gerbil global ischemia/reperfusion injury. Brain Res Bull.
90:1–9. 2013. View Article : Google Scholar
|
5
|
Park CH, Yokozawa T and Noh JS: Oligonol,
a low-molecular-weight polyphenol derived from lychee fruit,
attenuates diabetes-induced renal damage through the advanced
glycation end product-related pathway in db/db mice. J Nutr.
144:1150–1157. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bath KG and Lee FS: Variant BDNF
(Val66Met) impact on brain structure and function. Cogn Affect
Behav Neurosci. 6:79–85. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Nakagawa T, Tsuchida A, Itakura Y,
Nonomura T, Ono M, Hirota F, Inoue T, Nakayama C, Taiji M and
Noguchi H: Brain-derived neurotrophic factor regulates glucose
metabolism by modulating energy balance in diabetic mice. Diabetes.
49:436–444. 2000. View Article : Google Scholar : PubMed/NCBI
|
8
|
Tsuchida A, Nakagawa T, Itakura Y,
Ichihara J, Ogawa W, Kasuga M, Taiji M and Noguchi H: The effects
of brain-derived neurotrophic factor on insulin signal transduction
in the liver of diabetic mice. Diabetologia. 44:555–566. 2001.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Cheng Y, Ping J, Xu HD, Fu HJ and Zhou ZH:
Synergistic effect of a novel oxymatrine-baicalin combination
against hepatitis B virus replication, alpha smooth muscle actin
expression and type I collagen synthesis in vitro. World J
Gastroenterol. 12:5153–5159. 2006.PubMed/NCBI
|
10
|
Hwang JM, Wang CJ, Chou FP, Tseng TH,
Hsieh YS, Hsu JD and Chu CY: Protective effect of baicalin on
tert-butyl hydro-peroxide-induced rat hepatotoxicity. Arch Toxicol.
79:102–109. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jung SH, Kang KD, Ji D, Fawcett RJ, Safa
R, Kamalden TA and Osborne NN: The flavonoid baicalin counteracts
ischemic and oxidative insults to retinal cells and lipid
peroxidation to brain membranes. Neurochem Int. 53:325–337. 2008.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Waisundara VY, Hsu A, Tan BK and Huang D:
Baicalin reduces mitochondrial damage in streptozotocin-induced
diabetic Wistar rats. Diabetes Metab Res Rev. 25:671–677. 2009.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Li HT, Wu XD, Davey AK and Wang J:
Antihyperglycemic effects of baicalin on streptozotocin -
nicotinamide induced diabetic rats. Phytother Res. 25:189–194.
2011.
|
14
|
Kuhad A and Chopra K: Effect of sesamol on
diabetes-associated cognitive decline in rats. Exp Brain Res.
185:411–420. 2008. View Article : Google Scholar
|
15
|
Morris RG, Garrud P, Rawlins JN and
O'Keefe J: Place navigation impaired in rats with hippocampal
lesions. Nature. 297:681–683. 1982. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Ryan CM, Geckle MO and Orchard TJ:
Cognitive efficiency declines over time in adults with Type 1
diabetes: Effects of micro- and macrovascular complications.
Diabetologia. 46:940–948. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sachon C, Grimaldi A, Digy JP, Pillon B,
Dubois B and Thervet F: Cognitive function, insulin-dependent
diabetes and hypoglycaemia. J Intern Med. 231:471–475. 1992.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Wredling R, Levander S, Adamson U and Lins
PE: Permanent neuropsychological impairment after recurrent
episodes of severe hypoglycaemia in man. Diabetologia. 33:152–157.
1990. View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu YW, Zhu X, Li W, Lu Q, Wang JY, Wei YQ
and Yin XX: Ginsenoside Re attenuates diabetes-associated cognitive
deficits in rats. Pharmacol Biochem Behav. 101:93–98. 2012.
View Article : Google Scholar
|
20
|
Kuhad A and Chopra K: Curcumin attenuates
diabetic encephalopathy in rats: Behavioral and biochemical
evidences. Eur J Pharmacol. 576:34–42. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu J, Feng L, Ma D, Zhang M, Gu J, Wang
S, Fu Q, Song Y, Lan Z, Qu R, et al: Neuroprotective effect of
paeonol on cognition deficits of diabetic encephalopathy in
streptozotocin-induced diabetic rat. Neurosci Lett. 549:63–68.
2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang CY, Zheng W, Wang T, Xie JW, Wang SL,
Zhao BL, Teng WP and Wang ZY: Huperzine A activates Wnt/β-catenin
signaling and enhances the nonamyloidogenic pathway in an Alzheimer
transgenic mouse model. Neuropsychopharmacology. 36:1073–1089.
2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Min D, Mao X, Wu K, Cao Y, Guo F, Zhu S,
Xie N, Wang L, Chen T, Shaw C, et al: Donepezil attenuates
hippocampal neuronal damage and cognitive deficits after global
cerebral ischemia in gerbils. Neurosci Lett. 510:29–33. 2012.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Kim DS, Kim JY and Han Y: Curcuminoids in
neurodegenerative diseases. Recent Patents CNS Drug Discov.
7:184–204. 2012. View Article : Google Scholar
|
25
|
Sharma SK, Sherff CM, Shobe J, Bagnall MW,
Sutton MA and Carew TJ: Differential role of mitogen-activated
protein kinase in three distinct phases of memory for sensitization
in Aplysia. J Neurosci. 23:3899–3907. 2003.PubMed/NCBI
|
26
|
Adams JP and Sweatt JD: Molecular
psychology: Roles for the ERK MAP kinase cascade in memory. Annu
Rev Pharmacol Toxicol. 42:135–163. 2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhang JJ, Okutani F, Inoue S and Kaba H:
Activation of the mitogen-activated protein kinase/extracellular
signal-regulated kinase signaling pathway leading to cyclic AMP
response element-binding protein phosphorylation is required for
the long-term facilitation process of aversive olfactory learning
in young rats. Neuroscience. 121:9–16. 2003. View Article : Google Scholar
|
28
|
Xuan AG, Chen Y, Long DH, Zhang M, Ji WD,
Zhang WJ, Liu JH, Hong LP, He XS and Chen WL: PPARα Agonist
Fenofibrate Ameliorates Learning and Memory Deficits in Rats
Following Global Cerebral Ischemia. Mol Neurobiol. 2014.
|
29
|
Aminzadeh A, Dehpour AR, Safa M,
Mirzamohammadi S and Sharifi AM: Investigating the protective
effect of lithium against high glucose-induced neurotoxicity in
PC12 cells: Involvements of ROS, JNK and P38 MAPKs, and apoptotic
mitochondria pathway. Cell Mol Neurobiol. 34:1143–1150. 2014.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Forlenza OV, Diniz BS, Teixeira AL, Ojopi
EB, Talib LL, Mendonça VA, Izzo G and Gattaz WF: Effect of
brain-derived neurotrophic factor Val66Met polymorphism and serum
levels on the progression of mild cognitive impairment. World J
Biol Psychiatry. 11:774–780. 2010. View Article : Google Scholar : PubMed/NCBI
|