1
|
Giovannucci E: Modifiable risk factors for
colon cancer. Gastroenterol Clin North Am. 31:925–943. 2002.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Couzin J: Cancer T cells a boon for colon
cancer prognosis. Science. 313:1868–1869. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
François Y and Vignal J: Cancer of the
colon. Etiology, physiopathology, diagnosis, development and
prognosis, principles of the surgical treatment. Rev Prat.
41:1221–1225. 1991.
|
4
|
Chiu BC, Ji BT, Dai Q, Gridley G,
McLaughlin JK, Gao YT, Fraumeni JF Jr and Chow WH: Dietary factors
and risk of colon cancer in Shanghai, China. Cancer Epidemiol,
Biomarkers Prev. 12:201–208. 2003.
|
5
|
Barrier A, Boelle PY, Roser F, Gregg J,
Tse C, Brault D, Lacaine F, Houry S, Huguier M, Franc B, et al:
Stage II colon cancer prognosis prediction by tumor gene expression
profiling. J Clin Oncol. 24:4685–4691. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jee SH, Moon SM, Shin US, Yang HM and
Hwang DY: Effectiveness of adjuvant chemotherapy with
5-FU/leucovorin and prognosis in stage II colon cancer. J Korean
Soc Coloproctol. 27:322–328. 2011. View Article : Google Scholar
|
7
|
Dotan E and Cohen SJ: Challenges in the
management of stage II colon cancer. Semin Oncol. 38:511–520. 2011.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Risinger AL and Mooberry SL:
Taccalonolides: Novel micro-tubule stabilizers with clinical
potential. Cancer Lett. 291:14–19. 2010. View Article : Google Scholar :
|
9
|
Sivakumar G: Colchicine semisynthetics:
Chemotherapeutics for cancer? Curr Med Chem. 20:892–898. 2013.
|
10
|
Risinger AL, Giles FJ and Mooberry SL:
Microtubule dynamics as a target in oncology. Cancer Treat Rev.
35:255–261. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jordan MA and Wilson L: Microtubules as a
target for anticancer drugs. Nat Rev Cancer. 4:253–265. 2004.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Ravelli RB, Gigant B, Curmi PA, Jourdain
I, Lachkar S, Sobel A and Knossow M: Insight into tubulin
regulation from a complex with colchicine and a stathmin-like
domain. Nature. 428:198–202. 2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bhattacharyya B, Panda D, Gupta S and
Banerjee M: Anti-mitotic activity of colchicine and the structural
basis for its interaction with tubulin. Med Res Rev. 28:155–183.
2008. View Article : Google Scholar
|
14
|
Chopra A, Anderson A and Giardina C: Novel
piperazine-based compounds inhibit microtubule dynamics and
sensitize colon cancer cells to tumor necrosis factor-induced
apoptosis. J Biol Chem. 289:2978–2991. 2014. View Article : Google Scholar :
|
15
|
Acharya BR, Chatterjee A, Ganguli A,
Bhattacharya S and Chakrabarti G: Thymoquinone inhibits microtubule
polymerization by tubulin binding and causes mitotic arrest
following apoptosis in A549 cells. Biochimie. 97:78–91. 2014.
View Article : Google Scholar
|
16
|
Rai A, Gupta TK, Kini S, Kunwar A, Surolia
A and Panda D: CXI-benzo-84 reversibly binds to tubulin at
colchicine site and induces apoptosis in cancer cells. Biochem
Pharmacol. 86:378–391. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Magalhães HI, Wilke DV, Bezerra DP,
Cavalcanti BC, Rotta R, de Lima DP, Beatriz A, Moraes MO,
Diniz-Filho J and Pessoa C:
(4-Methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone inhibits tubulin
polymerization, induces G2/M arrest and triggers apoptosis in human
leukemia HL-60 cells. Toxicol Appl Pharmacol. 272:117–126. 2013.
View Article : Google Scholar
|
18
|
Chiang NJ, Lin CI, Liou JP, Kuo CC, Chang
CY, Chen LT and Chang JY: A novel synthetic microtubule inhibitor,
MPT0B214 exhibits antitumor activity in human tumor cells through
mitochondria-dependent intrinsic pathway. PLoS One. 8:e589532013.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Wu J, Yi W, Jin L, Hu D and Song B:
Antiproliferative and cell apoptosis-inducing activities of
compounds from Buddleja davidii in Mgc-803 cells. Cell Div.
7:202012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wang X: The expanding role of mitochondria
in apoptosis. Genes Dev. 15:2922–2933. 2001.PubMed/NCBI
|
21
|
Zamzami N, Marchetti P, Castedo M, Hirsch
T, Susin SA, Masse B and Kroemer G: Inhibitors of permeability
transition interfere with the disruption of the mitochondrial
trans-membrane potential during apoptosis. FEBS Lett. 384:53–57.
1996. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yan SL, Huang CY, Wu ST and Yin MC:
Oleanolic acid and ursolic acid induce apoptosis in four human
liver cancer cell lines. Toxicol In Vitro. 24:842–848. 2010.
View Article : Google Scholar
|
23
|
Roux PP and Blenis J: ERK and p38
MAPK-activated protein kinases: A family of protein kinases with
diverse biological functions. Microbiol Mol Biol Rev. 68:320–344.
2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tsuruta F, Sunayama J, Mori Y, Hattori S,
Shimizu S, Tsujimoto Y, Yoshioka K, Masuyama N and Gotoh Y: JNK
promotes Bax translocation to mitochondria through phosphorylation
of 14-3-3 proteins. EMBO J. 23:1889–1899. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Pugazhenthi S, Nesterova A, Sable C,
Heidenreich KA, Boxer LM, Heasley LE and Reusch JE: Akt/protein
kinase B up-regulates Bcl-2 expression through cAMP-response
element-binding protein. J Biol Chem. 275:10761–10766. 2000.
View Article : Google Scholar
|