1
|
Pollak MR: Inherited podocytopathies: FSGS
and nephrotic syndrome from a genetic viewpoint. J Am Soc Nephrol.
13:3016–3023. 2002. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chuang PY and He JC: Signaling in
regulation of podocyte phenotypes. Nephron Physiol. 111:p9–p15.
2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Rhen T and Cidlowski JA: Anti-inflammatory
action of glucocorticoids-new mechanisms for old drugs. N Engl J
Med. 353:1711–1723. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Xing CY, Saleem MA, Coward RJ, Ni L,
Witherden IR and Mathieson PW: Direct effects of dexamethasone on
human podocytes. Kidney Int. 70:1038–1045. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Guess A, Agrawal S, Wei CC, Ransom RF,
Benndorf R and Smoyer WE: Dose-and time-dependent glucocorticoid
receptor signaling in podocytes. Am J Physiol Renal Physiol.
14:F845–F853. 2010. View Article : Google Scholar
|
6
|
Ransom RF, Lam NG, Hallett MA, Atkinson SJ
and Smoyer WE: Glucocorticoids protect and enhance recovery of
cultured murine podocytes via actin filament stabilization. Kidney
Int. 68:2473–2483. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Xie H, Lin HL, Chen JL, et al: Correlation
of expression of glucocorticoid receptorα and β in podocytes with
sensitivity of glucocorticoid in primary nephrotic syndrome. China
J Mod Med. 36:35–39. 2012.
|
8
|
Lin SL, Chang D, Wu DY and Ying SY: A
novel RNA splicing-mediated gene silencing mechanism potential for
genome evolution. Biochem Biophys Res Commun. 10:754–760. 2003.
View Article : Google Scholar
|
9
|
Shruti K, Shrey K and Vibha R: Micro RNAs:
Tiny sequences with enormous potential. Biochem Biophys Res Commun.
407:445–449. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lv M, Zhang X, Jia H, Li D, Zhang B, Zhang
H, Hong M, Jiang T, Jiang Q, Lu J, et al: An oncogenic role of
miR-142-3p in human T-cell acute lymphoblastic leukemia (T-ALL) by
targeting glucocorticoid receptor-α and cAMP/PKA pathways.
Leukemia. 26:769–777. 2012. View Article : Google Scholar
|
11
|
Tessel MA, Benham AL, Krett NL, Rosen ST
and Gunaratne PH: Role for microRNAs in regulating glucocorticoid
response and resistance in multiple myeloma. Horm Cancer.
2:182–189. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the (−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
13
|
Sethupathy P, Megraw M and Hatzigeorgiou
A: A guide through present computational approaches for the
identification of mammalian microRNA targets. Nat Methods.
3:881–886. 2006. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Wang X: Computational prediction of
microRNA targets. Methods Mol Biol. 667:283–295. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ørom UA and Lund AH: Experimental
identification of microRNA targets. Gene. 451:1–5. 2010. View Article : Google Scholar
|
16
|
Humphreys DT, Westman BJ, Martin DI and
Preiss T: MicroRNAs control translation initiation by inhibiting
eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc
Natl Acad Sci USA. 102:16961–16966. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Guo H, Ingolia NT, Weissman JS and Bartel
DP: Mammalian microRNAs predominantly act to decrease target mRNA
levels. Nature. 466:835–840. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Baek D, Villén J, Shin C, Camargo FD, Gygi
SP and Bartel DP: The impact of microRNAs on protein output.
Nature. 455:64–71. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kriz W, Elger M, Nagata M, Kretzler M,
Uiker S, Koeppen-Hageman I, Tenschert S and Lemley KV: The role of
podocytes in the development of glomerular sclerosis. Kidney Int.
45(Suppl): S64–S72. 1994.
|
20
|
Kriz W, Gretz N and Lemley KV: Progression
of glomerular diseases: Is the podocyte the culprit? Kidney Int.
54:687–697. 1998. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kim YH, Goyal M, Kurnit D, Wharram B,
Wiggins J, Holzman L, Kershaw D and Wiggins R: Podocyte depletion
and glomerulosclerosis have a direct relationship in the
PAN-treated rat. Kidney Int. 60:957–968. 2001. View Article : Google Scholar : PubMed/NCBI
|
22
|
Nagalakshmi VK, Ren Q, Pugh MM, Valerius
MT, McMahon AP and Yu J: Dicer regulates the development of
nephrogenic and ureteric compartments in the mammalian kidney.
Kidney Int. 385:1–14. 2010.
|
23
|
Agrawal R, Tran U and Wessely O: The
miR-30 miRNA family regulates Xenopus pronephros development and
targets the transcription factor Xlim1/Lhx1. Development.
136:3927–3936. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Harvey SJ, Jarad G, Cunningham J, Goldberg
S, Schermer B, Harfe BD, McManus MT, Benzing T and Miner JH:
Podocyte-specific deletion of dicer alters cytoskeletal dynamics
and causes glomerular disease. J Am Soc Nephrol. 19:2150–2158.
2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wada T, Pippin JW, Nangaku M and Shankland
SJ: Dexamethasone's prosurvival benefits in podocytes require
extracellular signal-regulated kinase phosphorylation. Nephron Exp
Nephrol. 109:e8–e19. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Koshikawa M, Mukoyama M, Mori K, Suganami
T, Sawai K, Yoshioka T, Nagae T, Yokoi H, Kawachi H, Shimizu F, et
al: Role of p38 mitogen-activated protein kinase activation in
podocyte injury and proteinuria in experimental nephrotic syndrome.
J Am Soc Nephrol. 16:2690–2701. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wada T, Pippin JW, Marshall CB, Griffin SV
and Shankland SJ: Dexamethasone prevents podocyte apoptosis induced
by puromycin aminonucleoside: Role of p53 and Bcl-2-related family
proteins. J Am Soc Nephrol. 16:2615–2625. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wu J, Zheng C, Fan Y, Zeng C, Chen Z, Qin
W, Zhang C, Zhang W, Wang X, Zhu X, et al: Downregulation of
microRNA-30 facilitates podocyte injury and is prevented by
glucocorticoids. J Am Soc Nephrol. 25:92–104. 2014. View Article : Google Scholar :
|
29
|
Carthew RW and Sontheimer EJ: Origins and
Mechanisms of miRNAs and siRNAs. Cell. 136:642–655. 2009.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Fabian MR, Sonenberg N and Filipowicz W:
Regulation of mRNA translation and stability by microRNAs. Annu Rev
Biochem. 79:351–379. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Roberts AP, Lewis AP and Jopling CL:
miR-122 activates hepatitis C virus translation by a specialized
mechanism requiring particular RNA components. Nucleic Acids Res.
39:7716–7729. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Schnall-Levin M, Zhao Y, Perrimon N and
Berger B: Conserved microRNA targeting in Drosophilia is as
widespread in coding regions as in 3′-UTRs. Proc Natl Acad Sci USA.
107:15751–15756. 2010. View Article : Google Scholar
|
33
|
Selbach M, Schwanhäusser B, Thierfelder N,
Fang Z, Khanin R and Rajewsky N: Widespread changes in protein
synthesis induced by microRNAs. Nature. 455:58–63. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Maragkakis M, Alexiou P, Papadopoulos GL,
Reczko M, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis
K, Simossis VA, et al: Accurate microRNA target prediction
correlates with protein repression levels. BMC Bioinformatics.
10:2952009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Reyes-Herrera PH, Ficarra E, Acquaviva A
and Macii E: miREE: miRNA recognition elements ensemble. BMC
Bioinformatics. 12:4542011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Mapleson D, Moxon S, Dalmay T and Moulton
V: MirPlex: A tool for identifying miRNAs in high-throughput sRNA
datasets without a genome. J Exp Zool B Mol Dev Evol. 320:47–56.
2013. View Article : Google Scholar
|
37
|
Vreugdenhil E, Verissimo CS, Mariman R,
Kamphorst JT, Barbosa JS, Zweers T, Champagne DL, Schouten T,
Meijer OC, de Kloet ER, et al: MicroRNA 18 and 124a down-regulate
the glucocorticoid receptor: Implications for glucocorticoid
responsiveness in the brain. Endocrinology. 150:2220–2228. 2009.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Breving K and Esquela-Kerscher A: The
complexities of microRNA regulation: mirandering around the rules.
Int J Biochem Cell Biol. 42:1316–1329. 2010. View Article : Google Scholar
|