1
|
Lin Z, Gu J, Xiu J, Mi T, Dong J and
Tiwari JK: Traditional chinese medicine for senile dementia. Evid
Based Complement Alternat Med. 2012:6926212012. View Article : Google Scholar
|
2
|
Wang YB, Wang S, Bai R, Du JL, Xing Q, Ba
Y, Yang Y, Zhang XY, Shi CH and Yao JJ: Efficacy of switching from
premixed insulin to insulin glargine regimen in Type 2 diabetes
mellitus patients with different islet functions. Mol Med Rep.
10:1096–1102. 2014.PubMed/NCBI
|
3
|
Tonoli C, Heyman E, Roelands B, Pattyn N,
Buyse L, Piacentini MF, Berthoin S and Meeusen R: Type 1
diabetes-associated cognitive decline: A meta-analysis and update
of the current literature. J Diabetes. 6:499–513. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chen J, Liang L, Zhan L, Zhou Y, Zheng L,
Sun X, Gong J, Sui H, Jiang R, Zhang F and Zhang L: ZiBuPiYin
recipe protects db/db mice from diabetes-associated cognitive
decline through improving multiple pathological changes. PLoS One.
9:e916802014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Chang XH, Liang LN, Zhan LB, Lu XG, Shi X,
Qi X, Feng ZL, Wu MJ, Sui H, Zheng LP, et al: The effect of Chinese
Jinzhida recipe on the hippocampus in a rat model of
diabetes-associated cognitive decline. BMC Complement Altern Med.
13:1612013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kuhad A and Chopra K: Effect of sesamol on
diabetes-associated cognitive decline in rats. Exp Brain Res.
185:411–420. 2008. View Article : Google Scholar
|
7
|
Malardé L, Groussard C, Lefeuvre-Orfila L,
Vincent S, Efstathiou T and Gratas-Delamarche A: Fermented soy
permeate reduces cytokine level and oxidative stress in
streptozotocin-induced diabetic rats. J Med Food. 18:67–75. 2015.
View Article : Google Scholar
|
8
|
Wang SB and Jia JP: Oxymatrine attenuates
diabetes-associated cognitive deficits in rats. Acta Pharmacol Sin.
35:331–338. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Li R, Zang A, Zhang L, Zhang H, Zhao L, Qi
Z and Wang H: Chrysin ameliorates diabetes-associated cognitive
deficits in Wistar rats. Neurol Sci. 35:1527–1532. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Maczurek A, Hager K, Kenklies M, Sharman
M, Martins R, Engel J, Carlson DA and Münch G: Lipoic acid as an
anti-inflammatory and neuroprotective treatment for Alzheimer's
disease. Adv Drug Deliv Rev. 60:1463–1470. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Mao XY, Cao DF, Li X, Yin JY, Wang ZB,
Zhang Y, Mao CX, Zhou HH and Liu ZQ: Huperzine A ameliorates
cognitive deficits in streptozotocin-induced diabetic rats. Int J
Mol Sci. 15:7667–7683. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Umemoto T and Fujiki Y: Ligand-dependent
nucleocytoplasmic shuttling of peroxisome proliferator-activated
receptors, PPARα and PPARγ. Genes Cells. 17:576–596. 2012.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Tharaheswari M, Jayachandra Reddy N, Kumar
R, Varshney KC, Kannan M and Sudha Rani S: Trigonelline and
diosgenin attenuate ER stress, oxidative stress-mediated damage in
pancreas and enhance adipose tissue PPAR γ activity in type 2
diabetic rats. Mol Cell Biochem. 396:161–174. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Capobianco E, Martinez N, Fornes D, Higa
R, Di Marco I, Basualdo MN, Faingold MC and Jawerbaum A: PPAR
activation as a regulator of lipid metabolism, nitric oxide
production and lipid peroxidation in the placenta from type 2
diabetic patients. Mol Cell Endocrinol. 377:7–15. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu LP, Yan TH, Jiang LY, Hu W, Hu M, Wang
C, Zhang Q, Long Y, Wang JQ, Li YQ, et al: Pioglitazone ameliorates
memory deficits in streptozotocin-induced diabetic mice by reducing
brain β-amyloid through PPARγ activation. Acta Pharmacol Sin.
34:455–463. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Shi Y, Tan Y, Mao S and Gu W: Naringenin
inhibits allergen-induced airway remodeling in a murine model of
asthma. Mol Med Rep. 9:1204–1208. 2014.PubMed/NCBI
|
17
|
Arul D and Subramanian P: Naringenin
(citrus flavonone) induces growth inhibition, cell cycle arrest and
apoptosis in human hepatocellular carcinoma cells. Pathol Oncol
Res. 19:763–770. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Shimizu T, Lin F, Hasegawa M, Okada K,
Nojiri H and Yamane H: Purification and identification of
naringenin 7-O-methyltransferase, a key enzyme in biosynthesis of
flavonoid phytoalexin sakuranetin in rice. J Biol Chem.
287:19315–19325. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lee S, Lee CH, Moon SS, Kim E, Kim CT, Kim
BH, Bok SH and Jeong TS: Naringenin derivatives as anti-atherogenic
agents. Bioorg Med Chem Lett. 13:3901–3903. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jayaraman J, Veerappan M and Namasivayam
N: Potential beneficial effect of naringenin on lipid peroxidation
and antioxidant status in rats with ethanol-induced hepatotoxicity.
J Pharm Pharmacol. 61:1383–1390. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Renugadevi J and Prabu SM: Cadmium-induced
hepatotoxicity in rats and the protective effect of naringenin. Exp
Toxicol Pathol. 62:171–181. 2010. View Article : Google Scholar
|
22
|
Yen FL, Wu TH, Lin LT, Cham TM and Lin CC:
Naringenin-loaded nanoparticles improve the physicochemical
properties and the hepatoprotective effects of naringenin in
orally-administered rats with CCl (4)-induced acute liver failure.
Pharm Res. 26:893–902. 2009. View Article : Google Scholar
|
23
|
Pari L and Gnanasoundari M: Influence of
naringenin on oxytetracycline mediated oxidative damage in rat
liver. Basic Clin Pharmacol Toxicol. 98:456–461. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Siddiqui O, Sun Y, Liu JC and Chien YW:
Facilitated transdermal transport of insulin. J Pharm Sci.
76:341–345. 1987. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yu W, Wu J, Cai F, Xiang J, Zha W, Fan D,
Guo S, Ming Z and Liu C: Curcumin alleviates diabetic
cardiomyopathy in experimental diabetic rats. PLoS One.
7:e520132012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang X, Liu H, Zhang Y, Li J, Teng X, Liu
A, Yu X, Shan Z and Teng W: Effects of isolated positive maternal
thyroglobulin antibodies on brain development of offspring in an
experimental autoimmune thyroiditis model. Thyroid. 25:551–558.
2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Stemper BD, Shah AS, Pintar FA, McCrea M,
Kurpad SN, Glavaski-Joksimovic A, Olsen C and Budde MD: Head
rotational acceleration characteristics influence behavioral and
diffusion tensor imaging outcomes following concussion. Ann Biomed
Eng. 43:1071–1088. 2015. View Article : Google Scholar
|
28
|
Uslu S, Kebapçi N, Kara M and Bal C:
Relationship between adipocytokines and cardiovascular risk factors
in patients with type 2 diabetes mellitus. Exp Ther Med. 4:113–120.
2012.PubMed/NCBI
|
29
|
Fang H, Luo X, Wang Y, Liu N, Fu C, Wang
H, Fang Y, Shi W, Zhang Y, Zeng C and Wang X: Correlation between
single nucleotide polymorphisms of the ACTA2 gene and coronary
artery stenosis in patients with type 2 diabetes mellitus. Exp Ther
Med. 7:970–976. 2014.PubMed/NCBI
|
30
|
Oršolić N, Gajski G, Garaj-Vrhovac V,
Dikić D, Prskalo ZŠ and Sirovina D: DNA-protective effects of
quercetin or naringenin in alloxan-induced diabetic mice. Eur J
Pharmacol. 656:110–118. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Roy A, Das A, Das R, Haldar S,
Bhattacharya S and Haldar PK: Naringenin, a citrus flavonoid,
ameliorates arsenic-induced toxicity in swiss albino mice. J
Environ Pathol Toxicol Oncol. 33:195–204. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Priscilla DH, Roy D, Suresh A, Kumar V and
Thirumurugan K: Naringenin inhibits α-glucosidase activity: A
promising strategy for the regulation of postprandial hyperglycemia
in high fat diet fed streptozotocin induced diabetic rats. Chem
Biol Interact. 210:77–85. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang Y, He H, Li D, Zhu W, Duan K, Le Y,
Liao Y and Ou Y: The role of the TLR4 signaling pathway in
cognitive deficits following surgery in aged rats. Mol Med Rep.
7:1137–1142. 2013.PubMed/NCBI
|
34
|
Zhu X, Su B, Wang X, Smith MA and Perry G:
Causes of oxidative stress in Alzheimer disease. Cell Mol Life Sci.
64:2202–2210. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kuhad A, Sethi R and Chopra K: Lycopene
attenuates diabetes-associated cognitive decline in rats. Life Sci.
83:128–134. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Liu YW, Zhu X, Yang QQ, Lu Q, Wang JY, Li
HP, Wei YQ, Yin JL and Yin XX: Suppression of methylglyoxal
hyperactivity by mangiferin can prevent diabetes-associated
cognitive decline in rats. Psychopharmacology (Berl). 228:585–594.
2013. View Article : Google Scholar
|
37
|
Ahmed LA, Obaid AA, Zaki HF and Agha AM:
Naringenin adds to the protective effect of L-arginine in
monocrotaline-induced pulmonary hypertension in rats: Favorable
modulation of oxidative stress, inflammation and nitric oxide. Eur
J Pharm Sci. 62:161–170. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Jeon SM, Kim HK, Kim HJ, Do GM, Jeong TS,
Park YB and Choi MS: Hypocholesterolemic and antioxidative effects
of naringenin and its two metabolites in high-cholesterol fed rats.
Transl Res. 149:15–21. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Hermenean A, Ardelean A, Stan M, Herman H,
Mihali CV, Costache M and Dinischiotu A: Protective effects of
naringenin on carbon tetrachloride-induced acute nephrotoxicity in
mouse kidney. Chem Biol Interact. 205:138–147. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Lichte P, Grigoleit JS, Steiner EM,
Kullmann JS, Schedlowski M, Oberbeck R and Kobbe P: Low dose LPS
does not increase TLR4 expression on monocytes in a human in vivo
model. Cytokine. 63:74–80. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Li J, Wang Y, Zhou Y and Liu J: Gastric
bypass surgery alters the mechanisms of insulin resistance in the
adipose tissue of GK rats. Mol Med Rep. 6:1111–1116.
2012.PubMed/NCBI
|
42
|
Ross JH, Hardy DC, Schuyler CA, Slate EH,
Mize TW and Huang Y: Expression of periodontal interleukin-6
protein is increased across patients with neither periodontal
disease nor diabetes, patients with periodontal disease alone and
patients with both diseases. J Periodontal Res. 45:688–694. 2010.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Serlin Y, Levy J and Shalev H: Vascular
pathology and blood-brain barrier disruption in cognitive and
psychiatric complications of type 2 diabetes mellitus. Cardiovasc
Psychiatry Neurol. 2011:6092022011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Tsai SJ, Huang CS, Mong MC, Kam WY, Huang
HY and Yin MC: Anti-inflammatory and antifibrotic effects of
naringenin in diabetic mice. J Agric Food Chem. 60:514–521. 2012.
View Article : Google Scholar
|
45
|
Jayaraman J, Jesudoss VA, Menon VP and
Namasivayam N: Anti-inflammatory role of naringenin in rats with
ethanol induced liver injury. Toxicol Mech Methods. 22:568–576.
2012. View Article : Google Scholar : PubMed/NCBI
|
46
|
Bodet C, La VD, Epifano F and Grenier D:
Naringenin has anti-inflammatory properties in macrophage and ex
vivo human whole-blood models. J Periodontal Res. 43:400–407. 2008.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Pejcić T, Stanković I, Petković TR,
Borovac DN, Djordjević I and Jeftović-Stoimenov T: Peroxisome
proliferator-activated receptor gamma as modulator of inflammation
in pulmonary sarcoidosis. Srp Arh Celok Lek. 141:705–709. 2013.
View Article : Google Scholar
|
48
|
Grygiel-Gorniak B: Peroxisome
proliferator-activated receptors and their ligands: Nutritional and
clinical implications - a review. Nutr J. 13:172014. View Article : Google Scholar
|
49
|
Liu Q, Chen L, Hu L, Guo Y and Shen X:
Small molecules from natural sources, targeting signaling pathways
in diabetes. Biochim Biophys Acta. 1799:854–865. 2010. View Article : Google Scholar : PubMed/NCBI
|
50
|
Sharma AK, Bharti S, Ojha S, Bhatia J,
Kumar N, Ray R, Kumari S and Arya DS: Up-regulation of PPARγ, heat
shock protein-27 and -72 by naringin attenuates insulin resistance,
β-cell dysfunction, hepatic steatosis and kidney damage in a rat
model of type 2 diabetes. Br J Nutr. 106:1713–1723. 2011.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Bahi A, Nurulain SM and Ojha S: Ethanol
intake and ethanol-conditioned place preference are reduced in mice
treated with the bioflavonoid agent naringin. Alcohol. 48:677–685.
2014. View Article : Google Scholar : PubMed/NCBI
|
52
|
Rong W, Wang J, Liu X, Jiang L, Wei F, Hu
X, Han X and Liu Z: Naringin treatment improves functional recovery
by increasing BDNF and VEGF expression, inhibiting neuronal
apoptosis after spinal cord injury. Neurochem Res. 37:1615–1623.
2012. View Article : Google Scholar : PubMed/NCBI
|
53
|
Gopinath K, Prakash D and Sudhandiran G:
Neuroprotective effect of naringin, a dietary flavonoid against
3-nitropropionic acid-induced neuronal apoptosis. Neurochem Int.
59:1066–1073. 2011. View Article : Google Scholar : PubMed/NCBI
|