Roles of neural precursor cell expressed, developmentally downregulated 9 in tumor-associated cellular processes (Review)
- Authors:
- Sisen Zhang
- Lihua Wu
-
Affiliations: Emergency Department, People's Hospital of Zhengzhou, Zhengzhou, Henan 450000, P.R. China - Published online on: August 24, 2015 https://doi.org/10.3892/mmr.2015.4240
- Pages: 6415-6421
This article is mentioned in:
Abstract
Kumar S, Tomooka Y and Noda M: Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem Biophys Res Commun. 185:1155–1161. 1992. View Article : Google Scholar : PubMed/NCBI | |
Law SF, Estojak J, Wang B, Mysliwiec T, Kruh G and Golemis EA: Human enhancer of filamentation a novel p130cas-like docking protein, associates with focal adhesion kinase and induces pseudohyphal growth in Saccharomyces cerevisiae. Mol Cell Biol. 16:3327–3337. 1996. View Article : Google Scholar : PubMed/NCBI | |
Minegishi M, Tachibana K, Sato T, Iwata S, Nojima Y and Morimoto C: Structure and function of Cas-L, a 105-kD Crk-associated substrate-related protein that is involved in beta-1 integrin-mediated signaling in lymphocytes. J Exp Med. 184:1365–1375. 1996. View Article : Google Scholar : PubMed/NCBI | |
Kim M, Gans JD, Nogueira C, Wang A, Paik JH, Feng B, Brennan C, Hahn WC, Cordon-Cardo C, Wagner SN, et al: Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell. 125:1269–1281. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sakai R, Iwamatsu A, Hirano N, Ogawa S, Tanaka T, Mano H, Yazaki Y and Hirai H: A novel signaling molecule, p130, forms stable complexes in vivo with v-Crk and v-Src in a tyrosine phosphorylation dependent manner. EMBO J. 13:3748–3756. 1994.PubMed/NCBI | |
Alexandropoulos K and Baltimore D: Coordinate activation of c-Src by SH3- and SH2-binding sites on anovel, p130Cas-related protein, Sin. Genes Dev. 10:1341. 1995. View Article : Google Scholar | |
Alexandropoulos K, Donlin LT, Xing L and Regelmann AG: Sin: Good or bad? A T lymphocyte perspective. Immunol Rev. 192:181–195. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ishino M, Ohba T, Sasaki H and Sasaki T: Molecular cloning of a cDNA encoding a phosphoprotein, Efs, which contains a Src homology 3 domain and associates with Fyn. Oncogene. 11:2331–2338. 1995.PubMed/NCBI | |
Abassi YA, Rehn M, Ekman N, Alitalo K and Vuori K: p130Cas Couples the tyrosine kinase Bmx/Etk with regulation of the actin cytoskeleton and cell migration. J Biol Chem. 278:35636–35643. 2003. View Article : Google Scholar : PubMed/NCBI | |
Li SS: Specificity and versatility of SH3 and other proline-recognition domains: Structural basis and implications for cellular signal transduction. Biochem J. 390:641–653. 2005. View Article : Google Scholar : PubMed/NCBI | |
Machida K and Mayer BJ: The SH2 domain: Versatile signaling module and pharmaceutical target. Biochim Biophys Acta. 1747:1–25. 2005. View Article : Google Scholar : PubMed/NCBI | |
Canutescu AA and Dunbrack RL Jr: MollDE: A homology modeling framework you can click with. Bioinformatics. 21:2914–2916. 2005. View Article : Google Scholar : PubMed/NCBI | |
Law SF, Zhang YZ, Fashena S, Toby G, Estojak J and Golemis EA: Dimerization of the docking/adaptor protein HEF1/NEDD9/CAS-L via a carboxy-terminal helix-loop-helix domain. Exp Cell Res. 252:224–235. 1999. View Article : Google Scholar : PubMed/NCBI | |
Law SF, Zhang YZ, Klein-Szanto AJ and Golemis EA: Cell-cycle regulated processing of HEF1 to multiple protein forms differentially targeted to multiple subcellular compartments. Mol Cell Biol. 18:3540–3551. 1998. View Article : Google Scholar : PubMed/NCBI | |
Law SF, Estojak J, Wang B, Mysliwiec T, Kruh G and Golemis EA: Human Enhancer of Filamentation 1 a novel p130cas-like docking protein, associates withfocal adhesion kinase and induces pseudohyphal growth in Saccharomyces cerevisiae. Mol Cell Biol. 16:3327–3337. 1996. View Article : Google Scholar : PubMed/NCBI | |
Sima N, Cheng X, Ye F, Ma D, Xie X and Lü W: The overexpression of scaffolding protein NEDD9 promotes migration and invasion in cervical cancer via tyrosine phosphorylated FAK and SRC. PLoS One. 8:e745942013. View Article : Google Scholar : PubMed/NCBI | |
Ruest PJ, Shin NY, Polte TR, Zhang X and Hanks SK: Mechanisms of CAS substrate domain tyrosine phosphorylation by FAK and Src. Mol Cell Biol. 21:7641–7652. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kim M, Gans JD, Nogueira C, Wang A, Paik JH, Feng B, Brennan C, Hahn WC, Cordon-Cardo C, Wagner SN, et al: Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell. 125:1269–1281. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bargon SD, Gunning PW and O'Neill GM: The Cas family docking protein, HEF1, promotes the formation of neurite-like membrane extensions. Biochim Biophys Acta. 1746:143–154. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zheng M and McKeown-Longo PJ: Regulation of HEF1/NEDD9/CAS-L expression and phosphorylation by TGF-beta 1 and cell adhesion. J Biol Chem. 277:39599–39608. 2002. View Article : Google Scholar : PubMed/NCBI | |
Merrill RA, See AW, Wertheim ML and Clagett-Dame M: Crk-associated substrate (Cas) family member, NEDD9, is regulated in human neuroblastoma cells and in the embryonic hindbrain by all-trans retinoic acid. Dev Dyn. 231:564–575. 2004. View Article : Google Scholar : PubMed/NCBI | |
Merrill RA, Ahrens JM, Kaiser ME, Federhart KS, Poon VY and Clagett-Dame M: All-trans retinoic acid-responsive genes identified in the human SH-SY5Y neuroblastoma cell line and their regulated expression in the nervous system of early embryos. Biol Chem. 385:605–614. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sasaki T, Iwata S, Okano HJ, Urasaki Y, Hamada J, Tanaka H, Dang NH, Okano H and Morimoto C: Nedd9 protein, a Cas-L homologue, is upregulated after transient global ischemia in rats. Possible involvement of Nedd9 in the differentiation of neurons after ischemia. Stroke. 36:2457–2462. 2005. View Article : Google Scholar : PubMed/NCBI | |
Donninger H, Bonome T, Radonovich M, Pise-Masison CA, Brady J, Shih JH, Barrett JC and Birrer MJ: Whole genome expression profiling of advance stage papillary serous ovarian cancer reveals activated pathways. Oncogene. 23:8065–8077. 2004. View Article : Google Scholar : PubMed/NCBI | |
Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, et al: Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 122:947–956. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pugacheva EN and Golemis EA: The focal adhesion scaffolding protein HEF1 regulates activation of the Aurora-A and Nek2 kinases at the centrosome. Nat Cell Biol. 7:937–946. 2005. View Article : Google Scholar : PubMed/NCBI | |
Law SF, O'Neill GM, Fashena SJ, Einarson MB and Golemis EA: The docking protein HEF1 is an apoptotic mediator at focal adhesion sites. Mol Cell Biol. 20:5184–5195. 2000. View Article : Google Scholar : PubMed/NCBI | |
Nourry C, Maksumova L, Pang M, Liu X and Wang T: Direct interaction between Smad3, APC10, CDH1 and HEF1 in proteasomal Degradation of HEF1. BMC Cell Biol. 5:202004. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Elia AE, Law SF, Golemis EA, Farley J and Wang T: A novel ability of Smad3 to regulate proteasomal degradation of a cas family member, HEF1. EMBO J. 19:6759–6769. 2000. View Article : Google Scholar : PubMed/NCBI | |
Feng L, Guedes S and Wang T: Atrophin-1-interacting protein 4/human Itch is a ubiquitin E3 ligase for human enhancer of filamentation 1 in transforming growth factor-beta signaling pathways. J Biol Chem. 279:29681–29690. 2009. View Article : Google Scholar | |
Inamoto S, Iwata S, Inamoto T, Nomura S, Sasaki T, Urasaki Y, Hosono O, Kawasaki H, Tanaka H, Dang NH, et al: Crk-associated substrate lymphocyte type regulates transforming growth factor-beta signaling by inhibiting Smad6 and Smad7. Oncogene. 26:893–904. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang T: The 26S proteasome system in the signaling pathways of TGF-beta superfamily. Front Biosci. 8:1109–1127. 2003. View Article : Google Scholar | |
Wozniak MA, Modzelewska K, Kwong L and Keely PJ: Focal adhesion regulation of cell behavior. Biochim Biophys Acta. 1692:103–119. 2004. View Article : Google Scholar : PubMed/NCBI | |
Seo S, Asai T, Saito T, Suzuki T, Morishita Y, Nakamoto T, Ichikawa M, Yamamoto G, Kawazu M, Yamagata T, et al: Crk-associated substrate lymphocyte type is required for lymphocyte trafficking and marginal zone B cell maintenance. J Immunol. 175:3492–3501. 2005. View Article : Google Scholar : PubMed/NCBI | |
Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL and Massagué J: Genes that mediate breast cancer metastasis to lung. Nature. 436:518–524. 2005. View Article : Google Scholar : PubMed/NCBI | |
Natarajan M, Stewart JE, Golemis EA, Pugacheva EN, Alexandropoulos K, Cox BD, Wang W, Grammer JR and Gladson CL: HEF1 is a necessary and specific downstream effector of FAK that promotes the migration of glioblastoma cells. Oncogene. 25:1721–1732. 2006. View Article : Google Scholar | |
Fashena SJ, Einarson MB, O'Neill GM, Patriotis C and Golemis EA: Dissection of HEF1-dependent functions in motility and transcriptional regulation. J Cell Sci. 115:99–111. 2002.PubMed/NCBI | |
O'Neill GM and Golemis EA: Proteolysis of the docking protein HEF1 and implications for focal adhesion dynamics. Mol Cell Biol. 21:5094–5108. 2001. View Article : Google Scholar : PubMed/NCBI | |
Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT and Horwitz AF: FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol. 6:154–161. 2004. View Article : Google Scholar : PubMed/NCBI | |
Van Seventer GA, Salman HJ, Law SF, et al: Focal adhesion kinase regulates beta1 integrin dependent migration through an HEF1/NEDD9/CAS-L effector pathway. Eur J Imm. 31:1417–1427. 2001. View Article : Google Scholar | |
Ohashi Y, Iwata S, Kamiguchi K and Morimoto C: Tyrosine phosphorylation of Crk-associated substrate lymphocyte-type is a critical element in TCR- and beta1 integrin-induced T lymphocyte migration. J Immunol. 163:3727–3734. 1999.PubMed/NCBI | |
Iwata S, Souta-Kuribara A, Yamakawa A, Sasaki T, Shimizu T, Hosono O, Kawasaki H, Tanaka H, Dang NH, Watanabe T, et al: HTLV-I Tax induces and associates with Crk-associated substrate lymphocyte type (Cas-L). Oncogene. 24:1262–1271. 2005. View Article : Google Scholar | |
Klemke RL, Leng J, Molander R, Brooks PC, Vuori K and Cheresh DA: CAS/Crk coupling serves as a 'molecular switch' for induction of cell migration. J Cell Biol. 140:961–972. 1998. View Article : Google Scholar : PubMed/NCBI | |
Ridley AJ: Rho proteins: Linking signaling with membrane trafficking. Traffic. 2:303–310. 2001. View Article : Google Scholar : PubMed/NCBI | |
Smith LG and Li R: Actin polymerization: Riding the wave. Curr Biol. 14:R109–R111. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cai D, Iyer A, Felekkis KN, Near RI, Luo Z, Chernoff J, Albanese C, Pestell RG and Lerner A: AND-34/BCAR3, a GDP exchange factor whose overexpression confers anti estrogen resistance, activates Rac, PAK1 and the cyclin D1 promoter. Cancer Res. 63:6802–6808. 2003.PubMed/NCBI | |
Tamada M, Sheetz MP and Sawada Y: Activation of a signaling cascade by cytoskeleton stretch. Dev Cell. 7:709–718. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cai D, Felekkis KN, Near RI, O'Neill GM, van Seventer JM, Golemis EA and Lerner A: The GDP exchange factor AND-34 is expressed in B cells, associates with HEF1 and activates Cdc42. J Immunol. 170:969–978. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gotoh T, Cai D, Tian X, Feig LA and Lerner A: p130Cas regulates the activity of AND-34, a novel Ral, Rap1 and R-Ras guanine nucleotide exchange factor. J Biol Chem. 275:30118–30123. 2000. View Article : Google Scholar : PubMed/NCBI | |
Sakakibara A, Hattori S, Nakamura S and Katagiri T: A novel hematopoietic adaptor protein, Chat-H, positively regulates T cell receptor-mediated interleukin-2 production by Jurkat cells. J Biol Chem. 278:6012–6017. 2003. View Article : Google Scholar | |
Sakakibara A and Hattori S: Chat, a Cas/HEF1-associated adaptor protein that integrates multiple signaling pathways. J Biol Chem. 275:6404–6410. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lucas JT Jr, Salimath BP, Slomiany MG and Rosenzweig SA: Regulation of invasive behavior by vascular endothelial growth factor is HEF1-dependent. Oncogene. 29:4449–4459. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gervais FG, Thornberry NA, Ruffolo SC, Nicholson DW and Roy S: Caspases cleave focal adhesion kinase during apoptosis to generate a FRNK-like polypeptide. J Biol Chem. 273:17102–17108. 1998. View Article : Google Scholar : PubMed/NCBI | |
Kook S, Shim SR, Choi SJ, Ahnn J, Kim JI, Eom SH, Jung YK, Paik SG and Song WK: Caspase-mediated cleavage of p130Cas in etoposide-induced apoptotic Rat-1 cells. Mol Biol Cell. 11:929–939. 2000. View Article : Google Scholar : PubMed/NCBI | |
Stupack DG, Puente XS, Boutsaboualoy S, Storgard CM and Cheresh DA: Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol. 155:459–470. 2001. View Article : Google Scholar : PubMed/NCBI | |
Frisch SM: Anoikis. Methods Enzymol. 322:472–429. 2000. View Article : Google Scholar : PubMed/NCBI | |
Chang JX, Gao F, Zhao GQ and Zhang GJ: Role of NEDD9 in invasion and metastasis of lung adenocarcinoma. Exp Ther Med. 4:795–800. 2012.PubMed/NCBI | |
Biscardi JS, Belsches AP and Parsons SJ: Characterization of human epidermal growth factor receptor and c-Src interactions in human breast tumor cells. Mol Carcinog. 21:261–272. 1998. View Article : Google Scholar : PubMed/NCBI | |
Pugacheva EN and Golemis EA: HEF1-aurora A interactions: Points of dialog between the cell cycle and cell attachment signaling networks. Cell Cycle. 5:384–391. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dadke D, Jarnik M, Pugacheva EN, Singh MK and Golemis EA: Deregulation of HEF1 impairs M-phase progression by disrupting the RhoA activation cycle. Mol Biol Cell. 17:1204–1217. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fritz G and Kaina B: Rho GTPases: Promising cellular targets for novel anticancer drugs. Curr Cancer Drug Targets. 6:1–14. 2006.PubMed/NCBI | |
Honda H, Oda H, Nakamoto T, Honda Z, Sakai R, Suzuki T, Saito T, Nakamura K, Nakao K, Ishikawa T, et al: Cardiovascular anomaly, impaired actin bundling and resistance to Src-induced transformation in mice lacking p130Cas. Nat Genet. 19:361–365. 1998. View Article : Google Scholar : PubMed/NCBI | |
Dail M, Kalo MS, Seddon JA, Côté JF, Vuori K and Pasquale EB: SHEP1 function in cell migration is impaired by a single amino acid mutation that disrupts association with the scaffolding protein cas but not with Ras GTPases. J Biol Chem. 279:41892–41902. 2004. View Article : Google Scholar : PubMed/NCBI | |
Speranza MC, Frattini V, Pisati F, Kapetis D, Porrati P, Eoli M, Pellegatta S and Finocchiaro G: NEDD9, a novel target of miR-145, increases the invasiveness of glioblastoma. Oncotarget. 3:723–734. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chang JX, Gao F, Zhao GQ and Zhang GJ: Expression and clinical significance of NEDD9 in lung tissues. Med Oncol. 29:2654–2660. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wang D, Zhao KL, Zhu JW, Yin HB, Wei YZ, Wu ZJ, Cheng GJ, Wang F, Ni F, et al: NEDD9 overexpression correlates with poor prognosis in gastric cancer. Tumour Biol. 35:6351–6356. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kato-Stankiewicz J, Hakimi I, Zhi G, Zhang J, Serebriiskii I, Guo L, Edamatsu H, Koide H, Menon S, Eckl R, et al: Inhibitors of Ras/Raf-1 interaction identified by two-hybrid screening revert Ras-dependent transformation phenotypes in human cancer cells. Proc Natl Acad Sci USA. 99:14398–14403. 2002. View Article : Google Scholar : PubMed/NCBI | |
Druker BJ: Perspectives on the development of a molecularly targeted agent. Cancer Cell. 1:31–36. 2002. View Article : Google Scholar : PubMed/NCBI |