Effect of rutin on spinal cord injury through inhibition of the expression of MIP-2 and activation of MMP-9, and downregulation of Akt phosphorylation

  • Authors:
    • Peng Zhang
    • Xun Ma
  • View Affiliations

  • Published online on: September 24, 2015     https://doi.org/10.3892/mmr.2015.4357
  • Pages: 7554-7560
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Rutin has extensive pharmacological activities, including antibacterial and anti-inflammatory activities, cooling of the blood to inhibit bleeding, reducing capillary wall fragility and anti-influenza activities. However, whether rutin can ameliorate neuropathic function in spinal cord injury (SCI) in constriction‑induced peripheral nerve injury remains to be elucidated. In the present study, the potential protective effects of rutin on SCI rats were investigated. Neurological function was examined using the Basso, Beattie and Bresnahan (BBB) scoring system and by measuring the water content of the spinal cord tissue in SCI rats. SCI‑induced programmed cell death was measured using hematoxylin and eosin staining. In addition, the expression of macrophage inflammatory protein‑2 (MIP‑2) and the activation of matrix metalloproteinase‑9 (MMP‑9) in the SCI rats were evaluated using ELISA assay kits and zymographic analysis, respectively. The phosphorylation of protein kinase B (p‑Akt) was analyzed using a western blot assay. The results demonstrated that administrating rutin began to increase BBB scores and attenuate the spinal cord water content of the SCI rats. Administrating rutin prevented SCI‑induced programmed cell death. The SCI rats of in the rutin‑treated group were found to exhibit lower expression levels of MIP‑2 and p‑Akt, reduced MMP‑9 activation, compared with the SCI model rats. In conclusion, rutin was demonstrated as a potential protective agent in SCI and enhances the neurotrophic effect by inhibiting the expression of MIP-2 and activation of MMP-9, and downregulating the expression of p-Akt.
View Figures
View References

Related Articles

Journal Cover

November-2015
Volume 12 Issue 5

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Zhang P and Ma X: Effect of rutin on spinal cord injury through inhibition of the expression of MIP-2 and activation of MMP-9, and downregulation of Akt phosphorylation. Mol Med Rep 12: 7554-7560, 2015.
APA
Zhang, P., & Ma, X. (2015). Effect of rutin on spinal cord injury through inhibition of the expression of MIP-2 and activation of MMP-9, and downregulation of Akt phosphorylation. Molecular Medicine Reports, 12, 7554-7560. https://doi.org/10.3892/mmr.2015.4357
MLA
Zhang, P., Ma, X."Effect of rutin on spinal cord injury through inhibition of the expression of MIP-2 and activation of MMP-9, and downregulation of Akt phosphorylation". Molecular Medicine Reports 12.5 (2015): 7554-7560.
Chicago
Zhang, P., Ma, X."Effect of rutin on spinal cord injury through inhibition of the expression of MIP-2 and activation of MMP-9, and downregulation of Akt phosphorylation". Molecular Medicine Reports 12, no. 5 (2015): 7554-7560. https://doi.org/10.3892/mmr.2015.4357