1
|
Gates GA and Mills JH: Presbycusis.
Lancet. 366:1111–1120. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yamasoba T, Someya S, Yamada C, Weindruch
R, Prolla TA and Tanokura M: Role of mitochondrial dysfunction and
mitochondrial DNA mutations in age-related hearing loss. Hear Res.
226:185–193. 2007. View Article : Google Scholar
|
3
|
Lu J, Zheng YL, Wu DM, Luo L, Sun DX and
Shan Q: Ursolic acid ameliorates cognition deficits and attenuates
oxidative damage in the brain of senescent mice induced by
D-galactose. Biochem Pharmacol. 74:1078–1090. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhang ZF, Fan SH, Zheng YL, Lu J, Wu DM,
Shan Q and Hu B: Purple sweet potato color attenuates oxidative
stress and inflammatory response induced by d-galactose in mouse
liver. Food Chem Toxicol. 47:496–501. 2009. View Article : Google Scholar
|
5
|
5Liu CM, Ma JQ and Lou Y: Chronic
administration of troxerutin protects mouse kidney against
D-galactose-induced oxidative DNA damage. Food Chem Toxicol.
48:2809–2817. 2010. View Article : Google Scholar
|
6
|
Chen CF, Lang SY, Zuo PP, Yang N, Wang XQ
and Xia C: Effects of D-galactose on the expression of hippocampal
peripheral-type benzodiazepine receptor and spatial memory
performances in rats. Psychoneuroendocrinology. 31:805–811. 2006.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Hua X, Lei M, Zhang Y, Ding J, Han Q, Hu G
and Xiao M: Long-term D-galactose injection combined with
ovariectomy serves as a new rodent model for Alzheimer's disease.
Life Sci. 80:1897–1905. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kumar A, Prakash A and Dogra S: Naringin
alleviates cognitive impairment, mitochondrial dysfunction and
oxidative stress induced by D-galactose in mice. Food Chem Toxicol.
48:626–632. 2010. View Article : Google Scholar
|
9
|
Lu J, Wu DM, Zheng YL, Hu B and Zhang ZF:
Purple sweet potato color alleviates D-galactose-induced brain
aging in old mice by promoting survival of neurons via PI3K pathway
and inhibiting cytochrome C-mediated apoptosis. Brain Pathol.
20:598–612. 2010. View Article : Google Scholar
|
10
|
Zhang ZF, Lu J, Zheng YL, Hu B, Fan SH, Wu
DM, Zheng ZH, Shan Q and Liu CM: Purple sweet potato color protects
mouse liver against d-galactose-induced apoptosis via inhibiting
caspase-3 activation and enhancing PI3K/Akt pathway. Food Chem
Toxicol. 48:2500–2507. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lei M, Hua X, Xiao M, Ding J, Han Q and Hu
G: Impairments of astrocytes are involved in the
d-galactose-induced brain aging. Biochem Biophys Res Commun.
369:1082–1087. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hsieh HM, Wu WM and Hu ML: Soy isoflavones
attenuate oxidative stress and improve parameters related to aging
and Alzheimer's disease in C57BL/6J mice treated with D-galactose.
Food Chem Toxicol. 47:625–632. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Cui X, Wang L, Zuo P, Han Z, Fang Z, Li W
and Liu J: D-galactose-caused life shortening in Drosophila
melanogaster and Musca domestica is associated with oxidative
stress. Biogerontology. 5:317–325. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wei H, Li L, Song Q, Ai H, Chu J and Li W:
Behavioural study of the D-galactose induced aging model in
C57BL/6J mice. Behav Brain Res. 57:245–251. 2005. View Article : Google Scholar
|
15
|
Zhang XL, An LJ, Bao YM, Wang JY and Jiang
B: d-galactose administration induces memory loss and energy
metabolism disturbance in mice: Protective effects of catalpol.
Food Chem Toxicol. 46:2888–2894. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Tian Y, Zou B, Yang L, Xu SF, Yang J, Yao
P and Li CM: High molecular weight persimmon tannin ameliorates
cognition deficits and attenuates oxidative damage in senescent
mice induced by D-galactose. Food Chem Toxicol. 49:1728–1736. 2011.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Deng HB, Cui DP, Jiang JM, Feng YC, Cai NS
and Li DD: Inhibiting effects of Achyranthes bidentata
polysaccharide and Lycium barbarum polysaccharide on nonenzyme
glycation in D-galactose induced mouse aging model. Biomed Environ
Sci. 16:267–275. 2003.PubMed/NCBI
|
18
|
Deng HB, Cheng CL, Cui DP, Li DD, Cui L
and Cai NS: Structural and functional changes of immune system in
aging mouse induced by D-galactose. Biomed Environ Sci. 19:432–438.
2006.
|
19
|
Uddin MN, Nishio N, Ito S, Suzuki H and
Isobe K: Toxic effects of D-galactose on thymus and spleen that
resemble aging. J Immunotoxicol. 7:165–173. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kong WJ, Hu YJ, Wang Q, Wang Y, Han YC,
Cheng HM, Kong W and Guan MX: The effect of the mtDNA4834 deletion
on hearing. Biochem Biophys Res Commun. 344:425–430. 2006.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Kong WJ, Wang Y, Wang Q, Hu YJ, Han YC and
Liu J: The relation between D-galactose injection and mitochondrial
DNA 4834 bp deletion mutation. Exp Gerontol. 41:628–634. 2006.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Peng W, Hu Y, Zhong Y, Chen B, Sun Y, Yang
Y and Kong W: Protective roles of alpha-lipoic acid in rat model of
mitochondrial DNA4834bp deletion in inner ear. J Huazhong Univ Sci
Technolog Med Sci. 30:514–518. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhong Y, Hu YJ, Chen B, Peng W, Sun Y,
Yang Y, Zhao XY, Fan GR, Huang X and Kong WJ: Mitochondrial
transcription factor A overexpression and base excision repair
deficiency in the inner ear of rats with D-galactose-induced aging.
FEBS J. 278:2500–2510. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhong Y, Hu YJ, Yang Y, Peng W, Sun Y,
Chen B, Huang X and Kong WJ: Contribution of common deletion to
total deletion burden in mitochondrial DNA from inner ear of
d-galactose-induced aging rats. Mutat Res. 712:11–19. 2011.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Bedard K and Krause KH: The NOX family of
ROS-generating NADPH oxidases: Physiology and pathophysiology.
Physiol Rev. 87:245–313. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Bánfi B, Malgrange B, Knisz J, Steger K,
Dubois-Dauphin M and Krause KH: NOX3, a superoxide-generating NADPH
oxidase of the inner ear. J Biol Chem. 279:46065–46072. 2004.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Ueno N, Takeya R, Miyano K, Kikuchi H and
Sumimoto H: The NADPH oxidase Nox3 constitutively produces
superoxide in a p22phox-dependent manner: Its regulation by oxidase
organizers and activators. J Biol Chem. 280:23328–23339. 2005.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Mukherjea D, Whitworth CA, Nandish S,
Dunaway GA, Rybak LP and Ramkumar V: Expression of the kidney
injury molecule 1 in the rat cochlea and induction by cisplatin.
Neuroscience. 139:733–740. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mukherjea D, Jajoo S, Kaur T, Sheehan KE,
Ramkumar V and Rybak LP: Transtympanic administration of short
interfering (si)RNA for the NOX3 isoform of NADPH oxidase protects
against cisplatin-induced hearing loss in the rat. Antioxid Redox
Signal. 13:589–598. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Mukherjea D, Jajoo S, Sheehan K, Kaur T,
Sheth S, Bunch J, Perro C, Rybak LP and Ramkumar V: NOX3 NADPH
oxidase couples transient receptor potential vanilloid 1 to signal
transducer and activator of transcription 1-mediated inflammation
and hearing loss. Antioxid Redox Signal. 14:999–1010. 2011.
View Article : Google Scholar :
|
31
|
Youle RJ and Strasser A: The BCL-2 protein
family: Opposing activities that mediate cell death. Nat Rev Mol
Cell Biol. 9:47–59. 2008. View Article : Google Scholar
|
32
|
Someya S, Yamasoba T, Weindruch R, Prolla
TA and Tanokura M: Caloric restriction suppresses apoptotic cell
death in the mammalian cochlea and leads to prevention of
presbycusis. Neurobiol Aging. 28:1613–1622. 2007. View Article : Google Scholar
|
33
|
Someya S, Yamasoba T, Kujoth GC, Pugh TD,
Weindruch R, Tanokura M and Prolla TA: The role of mtDNA mutations
in the pathogenesis of age-related hearing loss in mice carrying a
mutator DNA polymerase gamma. Neurobiol Aging. 29:1080–1092. 2008.
View Article : Google Scholar
|
34
|
Yu F, Hao S, Zhao Y, Yang H, Fan XL and
Yang J: In utero and lactational β-carotene supplementation
attenuates D-galactose-induced hearing loss in newborn rats. Food
Chem Toxicol. 49:1697–1704. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chen B, Zhong Y, Peng W, Sun Y and Kong
WJ: Age-related changes in the central auditory system: Comparison
of D-galactose-induced aging rats and naturally aging rats. Brain
Res. 1344:43–53. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chen B, Zhong Y, Peng W, Sun Y, Hu YJ,
Yang Y and Kong WJ: Increased mitochondrial DNA damage and
decreased base excision repair in the auditory cortex of
D-galactose-induced aging rats. Mol Biol Rep. 38:3635–3642. 2011.
View Article : Google Scholar
|
37
|
Du Z, Yang Y, Hu Y, Sun Y, Zhang S, Peng
W, Zhong Y, Huang X and Kong W: A long-term high-fat diet increases
oxidative stress, mitochondrial damage and apoptosis in the inner
ear of d-galactose-induced aging rats. Hear Res. 287:15–24. 2012.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Nicklas JA, Brooks EM, Hunter TC, Single R
and Branda RF: Development of a quantitative PCR (TaqMan) assay for
relative mitochondrial DNA copy number and the common mitochondrial
DNA deletion in the rat. Environ Mol Mutagen. 44:313–320. 2004.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
40
|
Ho SC, Liu JH and Wu RY: Establishment of
the mimetic aging effect in mice caused by D-galactose.
Biogerontology. 4:15–18. 2003. View Article : Google Scholar : PubMed/NCBI
|
41
|
Turrens JF: Mitochondrial formation of
reactive oxygen species. J Physiol. 552:335–344. 2003. View Article : Google Scholar : PubMed/NCBI
|
42
|
Valko M, Leibfritz D, Moncol J, Cronin MT,
Mazur M and Telser J: Free radicals and antioxidants in normal
physiological functions and human disease. Int J Biochem Cell Biol.
39:44–84. 2007. View Article : Google Scholar
|
43
|
Loeb LA, Wallace DC and Martin GM: The
mitochondrial theory of aging and its relationship to reactive
oxygen species damage and somatic mtDNA mutations. Proc Natl Acad
Sci USA. 102:18769–18770. 2005. View Article : Google Scholar : PubMed/NCBI
|
44
|
Hiona A and Leeuwenburgh C: The role of
mitochondrial DNA mutations in aging and sarcopenia: Implications
for the mitochondrial vicious cycle theory of aging. Exp Gerontol.
43:24–33. 2008. View Article : Google Scholar :
|
45
|
Yowe DL and Ames BN: Quantitation of
age-related mitochondrial DNA deletions in rat tissues shows that
their pattern of accumulation differs from that of humans. Gene.
209:23–30. 1998. View Article : Google Scholar : PubMed/NCBI
|
46
|
Meissner C, Bruse P, Mohamed SA, Schulz A,
Warnk H, Storm T and Oehmichen M: The 4977 bp deletion of
mitochondrial DNA in human skeletal muscle, heart and different
areas of the brain: a useful biomarker or more. Exp Gerontol.
43:645–652. 2008. View Article : Google Scholar : PubMed/NCBI
|
47
|
Bai U, Seidman MD, Hinojosa R and Quirk
WS: Mitochondrial DNA deletions associated with aging and possibly
presbycusis: A human archival temporal bone study. Am J Otol.
18:449–453. 1997.PubMed/NCBI
|
48
|
Ueda N, Oshima T, Ikeda K, Abe K, Aoki M
and Takasaka T: Mitochondrial DNA deletion is a predisposing cause
for sensorineural hearing loss. Laryngoscope. 108:580–584. 1998.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Markaryan A, Nelson EG and Hinojosa R:
Quantification of the mitochondrial DNA common deletion in
presbycusis. Laryngoscope. 119:1184–1189. 2009. View Article : Google Scholar : PubMed/NCBI
|
50
|
Kujoth GC, Hiona A, Pugh TD, Someya S,
Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA,
et al: Mitochondrial DNA mutations, oxidative stress, and apoptosis
in mammalian aging. Science. 309:481–484. 2005. View Article : Google Scholar : PubMed/NCBI
|
51
|
Ma Y, Mehta SL, Lu B and Li PA: Deficiency
in the inner mitochondrial membrane peptidase 2-like (Immp21) gene
increases ischemic brain damage and impairs mitochondrial function.
Neurobiol Dis. 44:270–276. 2011. View Article : Google Scholar : PubMed/NCBI
|
52
|
Lambeth JD: Nox enzymes, ROS, and chronic
disease: An example of antagonistic pleiotropy. Free Radic Biol
Med. 43:332–347. 2007. View Article : Google Scholar : PubMed/NCBI
|
53
|
Hengartner MO: The biochemistry of
apoptosis. Nature. 407:770–776. 2000. View Article : Google Scholar : PubMed/NCBI
|
54
|
Green DR and Kroemer G: The
pathophysiology of mitochondrial cell death. Science. 305:626–629.
2004. View Article : Google Scholar : PubMed/NCBI
|
55
|
Pauler M, Schuknecht HF and White JA:
Atrophy of the stria vascularis as a cause of sensorineural hearing
loss. Laryngoscope. 98:754–759. 1988. View Article : Google Scholar : PubMed/NCBI
|