1
|
Fan B, Malato Y, Calvisi DF, Naqvi S,
Razumilava N, Ribback S, Gores GJ, Dombrowski F, Evert M, Chen X
and Willenbring H: Cholangiocarcinomas can originate from
hepatocytes in mice. J Clin Invest. 122:2911–2915. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Sekiya S and Suzuki A: Intrahepatic
cholangiocarcinoma can arise from Notch-mediated conversion of
hepatocytes. J Clin Invest. 122:3914–3918. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Khan SA, Toledano MB and Taylor-Robinson
SD: Epidemiology, risk factors, and pathogenesis of
cholangiocarcinoma. HPB Oxf. 10:77–82. 2008. View Article : Google Scholar
|
4
|
Shaib Y and El-Serag HB: The epidemiology
of cholangiocarcinoma. Semin Liver Dis. 24:115–125. 2004.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Shaib YH, Davila JA, McGlynn K and
El-Serag HB: Rising incidence of intrahepatic cholangiocarcinoma in
the United States: A true increase? J Hepatol. 40:472–477. 2004.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Shimoda M and Kubota K: Multi-disciplinary
treatment for cholangiocellular carcinoma. World J Gastroenterol.
13:1500–1504. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bragazzi MC, Cardinale V, Carpino G,
Venere R, Semeraro R, Gentile R, Gaudio E and Alvaro D:
Cholangiocarcinoma: Epidemiology and risk factors. Transl
Gastrointest Cancer. 1:21–32. 2012.
|
8
|
Bridgewater J, Galle PR, Khan SA, Llovet
JM, Park JW, Patel T, Pawlik TM and Gores GJ: Guidelines for the
diagnosis and management of intrahepatic cholangiocarcinoma. J
Hepatol. 60:1268–1289. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Tan JC, Coburn NG, Baxter NN, Kiss A and
Law CH: Surgical management of intrahepatic cholangiocarcinoma–a
population-based study. Ann Surg Oncol. 15:600–608. 2008.
View Article : Google Scholar
|
10
|
de Jong MC, Nathan H, Sotiropoulos GC,
Paul A, Alexandrescu S, Marques H, Pulitano C, Barroso E, Clary BM,
Aldrighetti L, et al: Intrahepatic cholangiocarcinoma: An
international multi-institutional analysis of prognostic factors
and lymph node assessment. J Clin Oncol. 29:3140–3145. 2011.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Endo I, Gonen M, Yopp AC, Dalal KM, Zhou
Q, Klimstra D, D'Angelica M, DeMatteo RP, Fong Y, Schwartz L, et
al: Intrahepatic cholangiocarcinoma: Rising frequency, improved
survival, and determinants of outcome after resection. Ann Surg.
248:84–96. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Choi SB, Kim KS, Choi JY, Park SW, Choi
JS, Lee WJ and Chung JB: The prognosis and survival outcome of
intrahepatic cholangiocarcinoma following surgical resection:
Association of lymph node metastasis and lymph node dissection with
survival. Ann Surg Oncol. 16:3048–3056. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Shimada K, Sano T, Nara S, Esaki M,
Sakamoto Y, Kosuge T and Ojima H: Therapeutic value of lymph node
dissection during hepatectomy in patients with intrahepatic
cholangiocellular carcinoma with negative lymph node involvement.
Surgery. 145:411–416. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sia D, Hoshida Y, Villanueva A, Roayaie S,
Ferrer J, Tabak B, Peix J, Sole M, Tovar V, Alsinet C, et al:
Integrative molecular analysis of intrahepatic cholangiocarcinoma
reveals 2 classes that have different outcomes. Gastroenterology.
144:829–840. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Edge SB and Compton CC: The American Joint
Committee on Cancer: the 7th edition of the AJCC cancer staging
manual and the future of TNM. Ann Surg Oncol. 17:1471–1474. 2010.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Mercer TR, Dinger ME and Mattick JS: Long
non-coding RNAs: Insights into functions. Nat Rev Genet.
10:155–159. 2009. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Wapinski O and Chang HY: Long noncoding
RNAs and human disease. Trends Cell Biol. 21:354–361. 2011.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Klecka J, Holubec L, Pesta M, Topolcan O,
Hora M, Eret V, Finek J, Chottova-Dvorakova M, Babjuk M, Novak K
and Stolz J: Differential display code 3 (DD3PCA3) in prostate
cancer diagnosis. Anticancer Res. 30:665–670. 2010.PubMed/NCBI
|
19
|
Shen M, Chen W, Yu K, Chen Z, Zhou W, Lin
X, Weng Z, Li C, Wu X and Tao Z: The diagnostic value of PCA3
gene-based analysis of urine sediments after digital rectal
examination for prostate cancer in a Chinese population. Exp Mol
Pathol. 90:97–100. 2011. View Article : Google Scholar
|
20
|
Ji P, Diederichs S, Wang W, Böing S,
Metzger R, Schneider PM, Tidow N, Brandt B, Buerger H, Bulk E, et
al: MALAT-1, a novel noncoding RNA, and thymosin beta4 predict
metastasis and survival in early-stage non-small cell lung cancer.
Oncogene. 22:8031–8041. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lai MC, Yang Z, Zhou L, Zhu QQ, Xie HY,
Zhang F, Wu LM, Chen LM and Zheng SS: Long non-coding RNA MALAT-1
overexpression predicts tumor recurrence of hepatocellular
carcinoma after liver transplantation. Med Oncol. 29:1810–1816.
2012. View Article : Google Scholar
|
22
|
Chakravadhanula M, Ozols VV, Hampton CN,
Zhou L, Catchpoole D and Bhardwaj RD: Expression of the HOX genes
and HOTAIR in atypical teratoid rhabdoid tumors and other pediatric
brain tumors. Cancer Genet. 207:425–428. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Park JY, Lee JE, Park JB, Yoo H, Lee SH
and Kim JH: Roles of Long Non-Coding RNAs on Tumorigenesis and
Glioma Development. Brain Tumor Res Treat. 2:1–6. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Mian A and Lee B: Urea-cycle disorders as
a paradigm for inborn errors of hepatocyte metabolism. Trends Mol
Med. 8:583–589. 2002. View Article : Google Scholar : PubMed/NCBI
|
25
|
Mei D, Song H, Wang K, Lou Y, Sun W, Liu
Z, Ding X and Guo J: Up-regulation of SUMO1 pseudogene 3 (SUMO1P3)
in gastric cancer and its clinical association. Med Oncol.
30(709)2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sun W, Wu Y, Yu X, Liu Y, Song H, Xia T,
Xiao B and Guo J: Decreased expression of long noncoding RNA
AC096655.1-002 in gastric cancer and its clinical significance.
Tumour Biol. 34:2697–2701. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Jiang Z, Guo J, Xiao B, Miao Y, Huang R,
Li D and Zhang Y: Increased expression of miR-421 in human gastric
carcinoma and its clinical association. J Gastroenterol. 45:17–23.
2010. View Article : Google Scholar
|
28
|
Wang Y, Hong Y, Li M, Long J, Zhao YP,
Zhang JX, Li Q, You H, Tong WM, Jia JD and Huang J: Mutation
inactivation of Nijmegen breakage syndrome gene (NBS1) in
hepatocellular carcinoma and intrahepatic cholangiocarcinoma. PLoS
One. 8:e824262013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yao C, Oh JH, Oh IG, Park CH and Chung JH:
[6]-Shogaol inhibits melanogenesis in B16 mouse melanoma cells
through activation of the ERK pathway. Acta Pharmacol Sin.
34:289–294. 2013. View Article : Google Scholar
|
30
|
Zhang H, Zhou WC, Li X, Meng WB, Zhang L,
Zhu XL, Zhu KX, Bai ZT, Yan J, Liu T, et al: 5-Azacytidine
suppresses the proliferation of pancreatic cancer cells by
inhibiting the Wntβ-catenin signaling pathway. Genet Mol Res.
13:5064–5072. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Oishi N, Kumar MR, Roessler S, Ji J,
Forgues M, Budhu A, Zhao X, Andersen JB, Ye QH, Jia HL, et al:
Transcriptomic profiling reveals hepatic stem-like gene signatures
and interplay of miR-200c and epithelial-mesenchymal transition in
intra-hepatic cholangiocarcinoma. Hepatology. 56:1792–1803. 2012.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Bonnefont J, Laforge T, Plastre O, Beck B,
Sorce S, Dehay C and Krause KH: Primate-specific RFPL1 gene
controls cell-cycle progression through cyclin B1/Cdc2 degradation.
Cell Death Differ. 18:293–303. 2011. View Article : Google Scholar :
|
33
|
Irizarry RA, Hobbs B, Collin F,
Beazer-Barclay YD, Antonellis KJ, Scherf U, et al: Exploration,
normalization, and summaries of high density oligonucleotide array
probe level data. Biostatistics. 4:249–264. 2003. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhang X, Sun S, Pu JK, et al: Long
non-coding RNA expression profiles predict clinical phenotypes in
glioma. Neurobiol Dis. 48:1–8. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Khachane AN and Harrison PM: Mining
mammalian transcript data for functional long non-coding RNAs. PLoS
One. 5:e103162010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Morris SM Jr: Regulation of enzymes of
urea and arginine synthesis. Annu Rev Nutr. 12:81–101. 1992.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Schofield JP: Molecular studies on an
ancient gene encoding for carbamoyl-phosphate synthetase. Clin Sci
(Lond). 84:119–128. 1993. View Article : Google Scholar
|
38
|
Liu TH, Li DC, Gu CF and Ye SF: Carbamyl
phosphate synthetase I. A novel marker for gastric carcinoma. Chin
Med J (Engl). 102:630–638. 1989.
|
39
|
Liu H, Dong H, Robertson K and Liu C: DNA
methylation suppresses expression of the urea cycle enzyme
carbamoyl phosphate synthetase 1 (CPS1) in human hepatocellular
carcinoma. Am J Pathol. 178:652–661. 2011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Tamandl D, Herberger B, Gruenberger B,
Puhalla H, Klinger M and Gruenberger T: Influence of hepatic
resection margin on recurrence and survival in intrahepatic
cholangiocarcinoma. Ann Surg Oncol. 15:2787–2794. 2008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Uenishi T, Yamazaki O, Tanaka H, Takemura
S, Yamamoto T, Tanaka S, Nishiguchi S and Kubo S: Serum cytokeratin
19 fragment (CYFRA21-1) as a prognostic factor in intrahepatic
cholangiocarcinoma. Ann Surg Oncol. 15:583–589. 2008. View Article : Google Scholar
|
42
|
Patel AH, Harnois DM, Klee GG, LaRusso NF
and Gores GJ: The utility of CA19-9 in the diagnoses of
cholangiocarcinoma in patients without primary sclerosing
cholangitis. Am J Gastroenterol. 95:204–207. 2000. View Article : Google Scholar : PubMed/NCBI
|
43
|
Karakatsanis A, Papaconstantinou I,
Gazouli M, Lyberopoulou A, Polymeneas G and Voros D: Expression of
microRNAs, miR-21, miR-31, miR-122, miR-145, miR-146a, miR-200c,
miR-221, miR-222, and miR-223 in patients with hepatocellular
carcinoma or intrahepatic cholangiocarcinoma and its prognostic
significance. Mol Carcinog. 52:297–303. 2013. View Article : Google Scholar
|
44
|
Nishino R, Honda M, Yamashita T, Takatori
H, Minato H, Zen Y, Sasaki M, Takamura H, Horimoto K, Ohta T, et
al: Identification of novel candidate tumour marker genes for
intrahepatic cholangiocarcinoma. J Hepatol. 49:207–216. 2008.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Schmitz KJ, Lang H, Frey UH, Sotiropoulos
GC, Wohlschlaeger J, Reis H, Takeda A, Siffert W, Schmid KW and
Baba HA: GNAS1 T393C polymorphism is associated with clinical
course in patients with intrahepatic cholangiocarcinoma. Neoplasia.
9:159–165. 2007. View Article : Google Scholar : PubMed/NCBI
|