1
|
Go AS, Mozaffarian D, Roger VL, Benjamin
EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, et al:
Executive summary: Heart disease and stroke statistics-2014 update:
A report from the American Heart Association. Circulation.
129:399–410. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Gilchrist M, Thorsson V, Li B, Rust AG,
Korb M, Roach JC, Kennedy K, Hai T, Bolouri H and Aderem A: Systems
biology approaches identify ATF3 as a negative regulator of
Toll-like receptor 4. Nature. 441:173–178. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hai TW, Liu F, Coukos WJ and Green MR:
Transcription factor ATF cDNA clones: An extensive family of
leucine zipper proteins able to selectively form DNA-binding
heterodimers. Genes Dev. 3:2083–2090. 1989. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chen BP, Liang G, Whelan J and Hai T: ATF3
and ATF3 delta Zip: Transcriptional repression versus activation by
alternatively spliced isoforms. J Biol Chem. 269:15819–15826.
1994.PubMed/NCBI
|
5
|
Hai T and Curran T: Cross-family
dimerization of transcription factors Fos/Jun and ATF/CREB alters
DNA binding specificity. Proc Natl Acad Sci USA. 88:3720–23724.
1991. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jiang HY, Wek SA, McGrath BC, Lu D, Hai T,
Harding HP, Wang X, Ron D, Cavener DR and Wek RC: Activating
transcription factor 3 is integral to the eukaryotic initiation
factor 2 kinase stress response. Mol Cell Biol. 24:1365–1377. 2004.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Hai T, Wolford CC and Chang YS: ATF3, a
hub of the cellular adaptive-response network, in the pathogenesis
of diseases: Is modulation of inflammation a unifying component?
Gene Expr. 15:1–11. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yang M, Chen J, Zhao J and Meng M:
Etanercept attenuates myocardial ischemia/reperfusion injury by
decreasing inflammation and oxidative stress. PLoS One.
9:e1080242014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ilczuk T, Wasiutynski A, Wilczek E and
Gornicka B: The study of the protein complement in myocardial
infarction. Immunol Lett. 162:262–268. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ma HJ, Li Q, Ma HJ, Guan Y, Shi M, Yang J,
Li DP and Zhang Y: Chronic intermittent hypobaric hypoxia
ameliorates ischemia/reperfusion-induced calcium overload in heart
via Na/Ca2+ exchanger in developing rats. Cell Physiol Biochem.
34:313–324. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Xu J, Qin X, Cai X, Yang L, Xing Y, Li J,
Zhang L, Tang Y, Liu J, Zhang X and Gao F: Mitochondrial JNK
activation triggers autophagy and apoptosis and aggravates
myocardial injury following ischemia/reperfusion. Biochim Biophys
Acta. 1852:262–270. 2015. View Article : Google Scholar
|
12
|
Kim MY, Lim SH and Lee J: Intake of hot
water-extracted apple protects against myocardial injury by
inhibiting apoptosis in an ischemia/reperfusion rat model. Nutr
Res. 34:951–960. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yamamoto S, Yamane M, Yoshida O, Okazaki
M, Waki N, Toyooka S, Oto T and Miyoshi S: Activations of
mitogen-activated protein kinases and regulation of their
downstream molecules after rat lung transplantation from donors
after cardiac death. Transplant Proc. 43:3628–3633. 2011.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang L, Deng S, Lu Y, Zhang Y, Yang L,
Guan Y, Jiang H and Li H: Increased inflammation and brain injury
after transient focal cerebral ischemia in activating transcription
factor 3 knockout mice. Neuroscience. 220:100–108. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Song DY, Oh KM, Yu HN, Park CR, Woo RS,
Jung SS and Baik TK: Role of activating transcription factor 3 in
ischemic penumbra region following transient middle cerebral artery
occlusion and reperfusion injury. Neurosci Res. 70:428–434. 2011.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang T, Zhao LL, Cao X, Qi LC, Wei GQ,
Liu JY, Yan SJ, Liu JG and Li XQ: Bioinformatics analysis of time
series gene expression in left ventricle (LV) with acute myocardial
infarction (AMI). Gene. 543:259–267. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Krivoruchko A and Storey KB: Activation of
the unfolded protein response during anoxia exposure in the turtle
Trachemys scripta elegans. Mol Cell Biochem. 374:91–103. 2013.
View Article : Google Scholar
|
18
|
Arslan F, de Kleijn DP and Pasterkam G:
Innate immune signaling in cardiac ischemia. Nat Rev Cardiol.
8:292–300. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Feng Y and Chao W: Toll-like receptors and
myocardial inflammation. Int J Inflam. 9:170352–170373. 2011.
|
20
|
Delarosa O, Dalemans W and Lombardo E:
Toll-like receptors as modulators of mesenchymal stem cells. Front
Immunol. 3:1822012. View Article : Google Scholar : PubMed/NCBI
|
21
|
DelaRosa O and Lombardo E: Modulation of
adult mesenchymal stem cells activity by toll-like receptors:
Implications on therapeutic potential. Mediators of Inflamm.
10:865601–865609. 2010.
|
22
|
Shimazu R, Akashi S, Ogata H, Nagai Y,
Fukudome K, Miyake K and Kimoto M: MD-2, a molecule that confers
lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp
Med. 189:1777–1782. 1999. View Article : Google Scholar : PubMed/NCBI
|
23
|
Whitmore MM, Iparraguirre A, Kubelka L,
Weninger W, Hai T and Williams BR: Negative regulation of
TLR-signaling pathways by activating transcription factor-3. J
Immunol. 179:3622–3630. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Suganami T, Yuan X, Shimoda Y,
Uchio-Yamada K, Nakagawa N, Shirakawa I, Usami T, Tsukahara T,
Nakayama K, Miyamoto Y, et al: Activating transcription factor 3
constitutes a negative feedback mechanism that attenuates saturated
fatty acid/toll-like receptor 4 signaling and macrophage activation
in obese adipose tissue. Circ Res. 105:25–32. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li HF, Cheng CF, Liao WJ, Lin H and Yang
RB: ATF3-mediated epigenetic regulation protects against acute
kidney injury. J Am Soc Nephrol. 21:1003–1013. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yoshida T, Sugiura H, Mitobe M, Tsuchiya
K, Shirota S, Nishimura S, Shiohira S, Ito H, Nobori K, Gullans SR,
et al: ATF3 protects against renal ischemia-reperfusion injury. J
Am Soc Nephrol. 19:217–224. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chen HH, Lai PF, Lan YF, Cheng CF, Zhong
WB, Lin YF, Chen TW and Lin H: Exosomal ATF3 RNA attenuates
pro-inflammatory gene MCP-1 transcription in renal
ischemia-reperfusion. J Cell Physiol. 229:1202–1211. 2014.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Rao J, Qian X, Li G, Pan X, Zhang C, Zhang
F, Zhai Y, Wang X and Lu L: ATF3-mediated NRF2/HO-1 signaling
regulates TLR4 innate immune responses in mouse liver
ischemia/reperfusion injury. Am J Transplant. 15:76–87. 2014.
View Article : Google Scholar : PubMed/NCBI
|
29
|
da Silva R, Lucchinetti E, Pasch T, Schaub
MC and Zaugg M: Ischemic but not pharmacological preconditioning
elicits a gene expression profile similar to unprotected
myocardium. Physiol Genomics. 20:117–130. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Brooks AC, Guo Y, Singh M, McCracken J,
Xuan YT, Srivastava S, Bolli R and Bhatnagar A: Endoplasmic
reticulum stress-dependent activation of ATF3 mediates the late
phase of ischemic preconditioning. J Mol Cell Cardiol. 76:138–147.
2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kim HB, Kong M, Kim TM, Suh YH, Kim WH,
Lim JH, Song JH and Jung MH: NFATc4 and ATF3 negatively regulate
adiponectin gene expression in 3T3-L1 adipocytes. Diabetes.
55:1342–1352. 2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kouzarides T: Acetylation: A regulatory
modification to rival phosphorylation? EMBO J. 19:1176–1179. 2000.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Cheung P, Allis CD and Sassone-Corsi P:
Signaling to chromatin through histone modifications. Cell.
103:263–271. 2000. View Article : Google Scholar : PubMed/NCBI
|
34
|
Cheng CF and Lin H: Acute kidney injury
and the potential for ATF3-regulated epigenetic therapy. Toxicol
Mech Methods. 21:362–366. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhao TC, Cheng G, Zhang LX, Tseng YT and
Padbury JF: Inhibition of histone deacetylases triggers
pharmacologic preconditioning effects against myocardial ischemic
injury. Cardiovasc Res. 76:473–481. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Granger A, Abdullah I, Huebner F, Stout A,
Wang T, Huebner T, Epstein JA and Gruber PJ: Histone deacetylase
inhibition reduces myocardial ischemia-reperfusion injury in mice.
FASEB J. 22:3549–3560. 2008. View Article : Google Scholar : PubMed/NCBI
|