1
|
Smith ACM, Boyd KE, Elsea SH, et al:
Smith-Magenis syndrome. Genereviews. Pagon RA, Adam MP, Bird TD,
Dolan CR, Fong CT and Stephens K: Seattle (WA): 1993
|
2
|
Madduri N, Peters SU, Voigt RG, Llorente
AM, Lupski JR and Potocki L: Cognitive and adaptive behavior
profiles in Smith-Magenis syndrome. J Dev Behav Pediatr.
27:188–192. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Andrieux J, Villenet C, Quief S, Lignon S,
Geffroy S, Roumier C, de Leersnyder H, de Blois MC, Manouvrier S,
Delobel B, et al: Genotype phenotype correlation of 30 patients
with Smith-Magenis syndrome (SMS) using comparative genome
hybridisation array: Cleft palate in SMS is associated with larger
deletions. J Med Genet. 44:537–540. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gamba BF, Vieira GH, Souza DH, Monteiro
FF, Lorenzini JJ, Carvalho DR and Morreti-Ferreira D: Smith-Magenis
syndrome: Clinical evaluation in seven Brazilian patients. Genet
Mol Res. 10:2664–2670. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
De Leersnyder H: Smith-Magenis syndrome.
Handb Clin Neurol. 111:295–296. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hall JG: Twinning. Lancet. 362:735–743.
2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Girirajan S, Vlangos CN, Szomju BB,
Edelman E, Trevors CD, Dupuis L, Nezarati M, Bunyan DJ and Elsea
SH: Genotype-phenotype correlation in Smith-Magenis syndrome:
Evidence that multiple genes in 17p11.2 contribute to the clinical
spectrum. Genet Med. 8:417–427. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Singh SM, Murphy B and O'Reilly R:
Monozygotic twins with chromosome 22q11 deletion and discordant
phenotypes: Updates with an epigenetic hypothesis. J Med Genet.
39:e712002. View Article : Google Scholar : PubMed/NCBI
|
9
|
Desmaze C, Scambler P, Prieur M, Halford
S, Sidi D, Le Deist F and Aurias A: Routine diagnosis of DiGeorge
syndrome by fluorescent in situ hybridization. Hum Genet.
90:663–665. 1993. View Article : Google Scholar : PubMed/NCBI
|
10
|
Van Hemel JO, Schaap C, Van Opstal D,
Mulder MP, Niermeijer MF and Meijers JH: Recurrence of DiGeorge
syndrome: Prenatal detection by FISH of a molecular 22q11 deletion.
J Med Genet. 32:657–658. 1995. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hicks M, Ferguson S, Bernier F and Lemay
JF: A case report of monozygotic twins with Smith-Magenis syndrome.
J Dev Behav Pediatr. 29:42–46. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Halder A, Jain M, Chaudhary I and Varma B:
Chromosome 22q11.2 microdeletion in monozygotic twins with
discordant phenotype and deletion size. Mol Cytogenet. 5:132012.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Fahiminiya S, Almuriekhi M, Nawaz Z,
Staffa A, Lepage P, Ali R, Hashim L, Schwartzentruber J, Abu
Khadija K, Zaineddin S, et al: Whole exome sequencing unravels
disease-causing genes in consanguineous families in Qatar. Clin
Genet. 86:134–141. 2014. View Article : Google Scholar
|
14
|
Kono M, Sugiura K, Suganuma M, Hayashi M,
Takama H, Suzuki T, Matsunaga K, Tomita Y and Akiyama M:
Whole-exome sequencing identifies ADAM10 mutations as a cause of
reticulate acropigmentation of Kitamura, a clinical entity distinct
from Dowling-Degos disease. Hum Mol Genet. 22:3524–3533. 2013.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Nuytemans K, Bademci G, Inchausti V,
Dressen A, Kinnamon DD, Mehta A, Wang L, Züchner S, Beecham GW,
Martin ER, et al: Whole exome sequencing of rare variants in EIF4G1
and VPS35 in Parkinson disease. Neurology. 80:982–989. 2013.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Ravenscroft G, Thompson EM, Todd EJ, Yau
KS, Kresoje N, Sivadorai P, Friend K, Riley K, Manton ND, Blumbergs
P, et al: Whole exome sequencing in foetal akinesia expands the
genotype-phenotype spectrum of GBE1 glycogen storage disease
mutations. Neuromuscul Disord. 23:165–169. 2013. View Article : Google Scholar
|
17
|
Solomon BD, Hadley DW, Pineda-Alvarez DE,
Kamat A, Teer JK, Cherukuri PF, Hansen NF, Cruz P, Young AC,
Berkman BE, et al NISC Comparative Sequencing Program: Incidental
medical information in whole-exome sequencing. Pediatrics.
129:e1605–e1611. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Verma R and Babu A: Human Chromosomes:
Principles & Techniques. 2nd edition. McGraw-Hill; New York,
NY: pp. 4191995, book review.
Mol Reprod Devel. 43:1341996.
|
19
|
Gnirke A, Melnikov A, Maguire J, Rogov P,
LeProust EM, Brockman W, Fennell T, Giannoukos G, Fisher S, Russ C,
et al: Solution hybrid selection with ultra-long oligonucleotides
for massively parallel targeted sequencing. Nat Biotechnol.
27:182–189. 2009. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Carmona-Mora P, Canales CP, Cao L, Perez
IC, Srivastava AK, Young JI and Walz K: RAI1 transcription factor
activity is impaired in mutants associated with Smith-Magenis
Syndrome. PLoS One. 7:e451552012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lacaria M, Gu W and Lupski JR: Circadian
abnormalities in mouse models of Smith-Magenis syndrome: Evidence
for involvement of RAI1. Am J Med Genet A. 161A:1561–1568. 2013.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Girirajan S, Elsas LJ II, Devriendt K and
Elsea SH: RAI1 variations in Smith-Magenis syndrome patients
without 17p11.2 deletions. J Med Genet. 42:820–828. 2005.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Hayashi M, Kim SW, Imanaka-Yoshida K,
Yoshida T, Abel ED, Eliceiri B, Yang Y, Ulevitch RJ and Lee JD:
Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular
integrity and leads to endothelial failure. J Clin Invest.
113:1138–1148. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Burke C, Sinclair K, Cowin G, Rose S, Pat
B, Gobe G and Colditz P: Intrauterine growth restriction due to
uteroplacental vascular insufficiency leads to increased
hypoxia-induced cerebral apoptosis in newborn piglets. Brain Res.
1098:19–25. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Uerpairojkit B, Manotaya S,
Tanawattanacharoen S, Wuttikon sammakit P and Charoenvidhya D: Are
the cardiac dimensions spared in growth-restricted fetuses
resulting from uteroplacental insufficiency? J Obstet Gynaecol Res.
38:390–395. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Firestein R, Bass AJ, Kim SY, Dunn IF,
Silver SJ, Guney I, Freed E, Ligon AH, Vena N, Ogino S, et al: CDK8
is a colorectal cancer oncogene that regulates beta-catenin
activity. Nature. 455:547–551. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Greene DM, Bloomfield G, Skelton J, Ivens
A and Pears CJ: Targets downstream of Cdk8 in Dictyostelium
development. BMC Dev Biol. 11:22011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Huang N, Lee I, Marcotte EM and Hurles ME:
Characterising and predicting haploinsufficiency in the human
genome. PLoS Genet. 6:e10011542010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Grayton HM, Fernandes C, Rujescu D and
Collier DA: Copy number variations in neurodevelopmental disorders.
Prog Neurobiol. 99:81–91. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lindhurst MJ, Sapp JC, Teer JK, Johnston
JJ, Finn EM, Peters K, Turner J, Cannons JL, Bick D, Blakemore L,
et al: A mosaic activating mutation in AKT1 associated with the
Proteus syndrome. N Engl J Med. 365:611–619. 2011. View Article : Google Scholar : PubMed/NCBI
|