1
|
Hart DN: Dendritic cells: Unique leukocyte
populations which control the primary immune response. Blood.
90:3245–3287. 1997.PubMed/NCBI
|
2
|
Shortman K and Liu YJ: Mouse and human
dendritic cell subtypes. Nat Rev Immunol. 2:151–161. 2002.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Mellman I and Steinman RM: Dendritic
cells: Specialized and regulated antigen processing machines. Cell.
106:255–258. 2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Steinman RM, Hawiger D and Nussenzweig MC:
Tolerogenic dendritic cells. Annu Rev Immunol. 21:685–711. 2003.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Bennett MV, Contreras JE, Bukauskas FF and
Sáez JC: New roles for astrocytes: Gap junction hemichannels have
something to communicate. Trends Neurosci. 26:610–617. 2003.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Saez JC, Berthoud VM, Branes MC, Martinez
AD and Beyer EC: Plasma membrane channels formed by connexins:
Their regulation and functions. Physiol Rev. 83:1359–1400. 2003.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Harris AL: Emerging issues of connexin
channels: Biophysics fills the gap. Q Rev Biophys. 34:325–472.
2001. View Article : Google Scholar
|
8
|
Evans WH, De Vuyst E and Leybaert L: The
gap junction cellular internet: Connexin hemichannels enter the
signalling limelight. Biochem J. 397:1–14. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Krenács T and Rosendaal M:
Immunohistological detection of gap junctions in human lymphoid
tissue: Connexin43 in follicular dendritic and lymphoendothelial
cells. J Histochem Cytochem. 43:1125–1137. 1995. View Article : Google Scholar : PubMed/NCBI
|
10
|
Krenacs T and Rosendaal M: Gap-junction
communication pathways in germinal center reactions. Dev Immunol.
6:111–118. 1998. View Article : Google Scholar : PubMed/NCBI
|
11
|
Nihei OK, Campos de Carvalho AC, Spray DC,
Savino W and Alves LA: A novel form of cellular communication among
thymic epithelial cells: Intercellular calcium wave propagation. Am
J Physiol Cell Physiol. 285:C1304–C1313. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Alves LA, Nihei OK, Fonseca PC, Carvalho
AC and Savino W: Gap junction modulation by extracellular signaling
molecules: The thymus model. Braz J Med Biol Res. 33:457–465. 2000.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Wong CW, Christen T and Kwak BR: Connexins
in leukocytes: Shuttling messages? Cardiovasc Res. 62:357–367.
2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Oviedo-Orta E, Errington RJ and Evans WH:
Gap junction intercellular communication during lymphocyte
transendothelial migration. Cell Biol Int. 26:253–263. 2002.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Eugenín EA, Brañes MC, Berman JW and Sáez
JC: TNF-alpha plus IFN-gamma induce connexin43 expression and
formation of gap junctions between human monocytes/macrophages that
enhance physiological responses. J Immunol. 170:1320–1328. 2003.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Neijssen J, Herberts C, Drijfhout JW,
Reits E, Janssen L and Neefjes J: Cross-presentation by
intercellular peptide transfer through gap junctions. Nature.
434:83–88. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kumar P, Ban HS, Kim SS, Wu H, Pearson T,
Greiner DL, Laouar A, Yao J, Haridas V, Habiro K, et al: T
cell-specific siRNA delivery suppresses HIV-1 infection in
humanized mice. Cell. 134:577–586. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chhabra A, Chakraborty NG and Mukherji B:
Silencing of endogenous IL-10 in human dendritic cells leads to the
generation of an improved CTL response against human melanoma
associated antigenic epitope, MART-1 27–35. Clin Immunol.
126:251–259. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
El-Armouche A, Singh J, Naito H,
Wittköpper K, Didié M, Laatsch A, Zimmermann WH and Eschenhagen T:
Adenovirus-delivered short hairpin RNA targeting PKCalpha improves
contractile function in reconstituted heart tissue. J Mol Cell
Cardiol. 43:371–376. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Baba K, Goto-Koshino Y, Mizukoshi F,
Setoguchi-Mukai A, Fujino Y, Ohno K and Tsujimoto H: Inhibition of
the replication of feline immunodeficiency virus by lentiviral
vector-mediated RNA interference in feline cell lines. J Vet Med
Sci. 70:777–783. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu G, Ng H, Akasaki Y, Yuan X, Ehtesham
M, Yin D, Black KL and Yu JS: Small interference RNA modulation of
IL-10 in human monocyte-derived dendritic cells enhances the Th1
response. Eur J Immunol. 34:1680–1687. 2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chen X, He J and Chang LJ: Alteration of T
cell immunity by lentiviral transduction of human monocyte-derived
dendritic cells. Retrovirology. 1:–37. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Prechtel AT, Turza NM, Theodoridis AA,
Kummer M and Steinkasserer A: Small interfering RNA (siRNA)
delivery into monocyte-derived dendritic cells by electroporation.
J Immunol Methods. 311:139–152. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Jantsch J, Turza N, Volke M, Eckardt KU,
Hensel M, Steinkasserer A, Willam C and Prechtel AT: Small
interfering RNA (siRNA) delivery into murine bone marrow-derived
dendritic cells by electroporation. J Immunol Methods. 337:71–77.
2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Sumimoto H, Tsuji T, Miyoshi H, Hagihara
M, Takada-Yamazaki R, Okamoto S, Ikeda Y, Takahashi T and Kawakami
Y: Rapid and efficient generation of lentivirally gene-modified
dendritic cells from DC progenitors with bone marrow stromal cells.
J Immunol Methods. 271:153–165. 2002. View Article : Google Scholar : PubMed/NCBI
|
26
|
Elbashir SM, Harborth J, Lendeckel W,
Yalcin A, Weber K and Tuschl T: Duplexes of 21-nucleotide RNAs
mediate RNA interference in cultured mammalian cells. Nature.
411:494–498. 2001. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Matsue H, Yao J, Matsue K, Nagasaka A,
Sugiyama H, Aoki R, Kitamura M and Shimada S: Gap junction-mediated
intercellular communication between dendritic cells (DCs) is
required for effective activation of DCs. J Immunol. 176:181–190.
2006. View Article : Google Scholar
|
28
|
Mendoza-Naranjo A, Saéz PJ, Johansson CC,
Ramírez M, Mandakovic D, Pereda C, López MN, Kiessling R, Sáez JC
and Salazar-Onfray F: Functional gap junctions facilitate melanoma
antigen transfer and cross-presentation between human dendritic
cells. J Immunol. 178:6949–6957. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Guan X, Cravatt BF, Ehring GR, Hall JE,
Boger DL, Lerner RA and Gilula NB: The sleep-inducing lipid
oleamide deconvolutes gap junction communication and calcium wave
transmission in glial cells. J Cell Biol. 139:1785–1792. 1997.
View Article : Google Scholar
|
30
|
Guan X, Wilson S, Schlender KK and Ruch
RJ: Gap-junction disassembly and connexin 43 dephosphorylation
induced by 18 beta-glycyrrhetinic acid. Mol Carcinog. 16:157–164.
1996. View Article : Google Scholar : PubMed/NCBI
|
31
|
Montecino-Rodriguez E, Leathers H and
Dorshkind K: Expression of connexin 43 (Cx43) is critical for
normal hemato-poiesis. Blood. 96:917–924. 2000.PubMed/NCBI
|
32
|
Ichim TE, Zhong R and Min WP: Prevention
of allograft rejection by in vitro generated tolerogenic dendritic
cells. Transpl Immunol. 11:295–306. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hornung V, Guenthner-Biller M, Bourquin C,
Ablasser A, Schlee M, Uematsu S, Noronha A, Manoharan M, Akira S,
de Fougerolles A, et al: Sequence-specific potent induction of
IFN-alpha by short interfering RNA in plasmacytoid dendritic cells
through TLR7. Nat Med. 11:263–270. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Prechtel AT, Turza NM, Theodoridis AA and
Steinkasserer A: CD83 knockdown in monocyte-derived dendritic cells
by small interfering RNA leads to a diminished T cell stimulation.
J Immunol. 178:5454–5464. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Randolph GJ, Sanchez-Schmitz G and Angeli
V: Factors and signals that govern the migration of dendritic cells
via lymphatics: Recent advances. Springer Semin Immunopathol.
26:273–287. 2005. View Article : Google Scholar
|
36
|
Sumen C, Mempel TR, Mazo IB and von
Andrian UH: Intravital microscopy: Visualizing immunity in context.
Immunity. 21:315–329. 2004.PubMed/NCBI
|