1
|
Longhi A, Errani C, De Paolis M, Mercuri M
and Bacci G: Primary bone osteosarcoma in the pediatric age: State
of the art. Cancer Treat Rev. 32:423–436. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kang K, Lee JH and Kim HG: Contralateral
referred pain in a patient with intramedullary spinal cord
metastasis from extraskeletal small cell osteosarcoma. J Spinal
Cord Med. 36:695–699. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Chou AJ, Geller DS and Gorlick R: Therapy
for osteosarcoma: Where do we go from here? Paediatr Drugs.
10:315–327. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ahmad I, Iwata T and Leung HY: Mechanisms
of FGFR-mediated carcinogenesis. Biochim Biophys Acta.
1823.850–860. 2012.
|
5
|
Liang G, Liu Z, Wu J, Cai Y and Li X:
Anticancer molecules targeting fibroblast growth factor receptors.
Trends Pharmacol Sci. 33:531–541. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wesche J, Haglund K and Haugsten EM:
Fibroblast growth factors and their receptors in cancer. Biochem J.
437:199–213. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Johnson DE and Williams LT: Structural and
functional diversity in the FGF receptor multigene family. Adv
Cancer Res. 60:1–41. 1993. View Article : Google Scholar : PubMed/NCBI
|
8
|
Chin K, DeVries S, Fridlyand J, Spellman
PT, Roydasgupta R, Kuo WL, Lapuk A, Neve RM, Qian Z, Ryder T, et
al: Genomic and transcriptional aberrations linked to breast cancer
pathophysiologies. Cancer Cell. 10:529–541. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gelsi-Boyer V, Orsetti B, Cervera N,
Finetti P, Sircoulomb F, Rougé C, Lasorsa L, Letessier A, Ginestier
C, Monville F, et al: Comprehensive profiling of 8p11-12
amplification in breast cancer. Mol Cancer Res. 3:655–667. 2005.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Jacquemier J, Adelaide J, Parc P,
Penault-Llorca F, Planche J, deLapeyriere O and Birnbaum D:
Expression of the FGFR1 gene in human breast-carcinoma cells. Int J
Cancer. 59:373–378. 1994. View Article : Google Scholar : PubMed/NCBI
|
11
|
McDonald ER III and El-Deiry WS: Cell
cycle control as a basis for cancer drug development (Review). Int
J Oncol. 16:871–886. 2000.PubMed/NCBI
|
12
|
Roumiantsev S, Krause DS, Neumann CA,
Dimitri CA, Asiedu F, Cross NC and Van Etten RA: Distinct stem cell
myeloproliferative/T lymphoma syndromes induced by ZNF198-FGFR1 and
BCR-FGFR1 fusion genes from 8p11 trans-locations. Cancer Cell.
5:287–298. 2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Xiao S, Nalabolu SR, Aster JC, Ma J,
Abruzzo L, Jaffe ES, Stone R, Weissman SM, Hudson TJ and Fletcher
JA: FGFR1 is fused with a novel zinc-finger gene, ZNF198, in the
t(8;13) leukaemia/lymphoma syndrome. Nat Genet. 18:84–87. 1998.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Yagasaki F, Wakao D, Yokoyama Y, Uchida Y,
Murohashi I, Kayano H, Taniwaki M, Matsuda A and Bessho M: Fusion
of ETV6 to fibroblast growth factor receptor 3 in peripheral T-cell
lymphoma with a t(4;12) (p16;p13) chromosomal translocation. Cancer
Res. 61:8371–8374. 2001.PubMed/NCBI
|
15
|
Clark JC, Tichelaar JW, Wert SE, Itoh N,
Perl AK, Stahlman MT and Whitsett J: FGF-10 disrupts lung
morphogenesis and causes pulmonary adenomas in vivo. Am J Physiol
Lung Cell Mol Physiol. 280:L705–L715. 2001.PubMed/NCBI
|
16
|
Marek L, Ware KE, Fritzsche A, Hercule P,
Helton WR, Smith JE, McDermott LA, Coldren CD, Nemenoff RA, Merrick
DT, et al: Fibroblast growth factor (FGF) and FGF receptor-mediated
autocrine signaling in non-small-cell lung cancer cells. Mol
Pharmacol. 75:196–207. 2009. View Article : Google Scholar :
|
17
|
van Rhijn BW, van Tilborg AA, Lurkin I,
Bonaventure J, de Vries A, Thiery JP, van der Kwast TH, Zwarthoff
EC and Radvanyi F: Novel fibroblast growth factor receptor 3
(FGFR3) mutations in bladder cancer previously identified in
non-lethal skeletal disorders. Eur J Hum Genet. 10:819–824. 2002.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Greenman C, Stephens P, Smith R, Dalgliesh
GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C,
et al: Patterns of somatic mutation in human cancer genomes.
Nature. 446:153–158. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Naski MC, Wang Q, Xu J and Ornitz DM:
Graded activation of fibroblast growth factor receptor 3 by
mutations causing achon-droplasia and thanatophoric dysplasia. Nat
Genet. 13:233–237. 1996. View Article : Google Scholar : PubMed/NCBI
|
20
|
Gru AA and Allred DC: FGFR1 amplification
and the progression of non-invasive to invasive breast cancer.
Breast Cancer Res. 14:1162012. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Shiang CY, Qi Y, Wang B, Lazar V, Wang J,
Fraser Symmans W, Hortobagyi GN, Andre F and Pusztai L:
Amplification of fibroblast growth factor receptor-1 in breast
cancer and the effects of brivanib alaninate. Breast Cancer Res
Treat. 123:747–755. 2010. View Article : Google Scholar
|
22
|
Dutt A, Ramos AH, Hammerman PS, Mermel C,
Cho J, Sharifnia T, Chande A, Tanaka KE, Stransky N, Greulich H, et
al: Inhibitor-sensitive FGFR1 amplification in human non-small cell
lung cancer. PLoS One. 6:e203512011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tran TN, Selinger CI, Kohonen-Corish MR,
McCaughan BC, Kennedy CW, O'Toole SA and Cooper WA: Fibroblast
growth factor receptor 1 (FGFR1) copy number is an independent
prognostic factor in non-small cell lung cancer. Lung Cancer.
81:462–467. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ren M, Hong M, Liu G, Wang H, Patel V,
Biddinger P, Silva J, Cowell J and Hao Z: Novel FGFR inhibitor
ponatinib suppresses the growth of non-small cell lung cancer cells
overexpressing FGFR1. Oncol Rep. 29:2181–2190. 2013.PubMed/NCBI
|
25
|
Acevedo VD, Gangula RD, Freeman KW, Li R,
Zhang Y, Wang F, Ayala GE, Peterson LE, Ittmann M and Spencer DM:
Inducible FGFR-1 activation leads to irreversible prostate
adenocarcinoma and an epithelial- to -mesenchymal transition.
Cancer Cell. 12:559–571. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lehnen NC, von Mässenhausen A, Kalthoff H,
Zhou H, Glowka T, Schütte U, Höller T, Riesner K, Boehm D,
Merkelbach-Bruse S, et al: Fibroblast growth factor receptor 1 gene
amplification in pancreatic ductal adenocarcinoma. Histopathology.
63:157–166. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Freier K, Schwaenen C, Sticht C,
Flechtenmacher C, Mühling J, Hofele C, Radlwimmer B, Lichter P and
Joos S: Recurrent FGFR1 amplification and high FGFR1 protein
expression in oral squamous cell carcinoma (OSCC). Oral Oncol.
43:60–66. 2007. View Article : Google Scholar
|
28
|
Simon R, Richter J, Wagner U, Fijan A,
Bruderer J, Schmid U, Ackermann D, Maurer R, Alund G, Knönagel H,
et al: High-throughput tissue microarray analysis of 3p25 (RAF1)
and 8p12 (FGFR1) copy number alterations in urinary bladder cancer.
Cancer Res. 61:4514–4519. 2001.PubMed/NCBI
|
29
|
Gorringe KL, Jacobs S, Thompson ER,
Sridhar A, Qiu W, Choong DY and Campbell IG: High-resolution single
nucleotide polymorphism array analysis of epithelial ovarian cancer
reveals numerous microdeletions and amplifications. Clin Cancer
Res. 13:4731–4739. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Missiaglia E, Selfe J, Hamdi M, Williamson
D, Schaaf G, Fang C, Koster J, Summersgill B, Messahel B, Versteeg
R, et al: Genomic imbalances in rhabdomyosarcoma cell lines affect
expression of genes frequently altered in primary tumors: An
approach to identify candidate genes involved in tumor development.
Genes Chromosomes Cancer. 48:455–467. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Guimarães JM, Guimarães IC, Duarte ME,
Vieira T, Vianna VF, Fernandes MB, Vieira AR and Casado PL:
Polymorphisms in BMP4 and FGFR1 genes are associated with fracture
non-union. J Orthop Res. 31:1971–1979. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chou AJ, Merola PR, Wexler LH, Gorlick RG,
Vyas YM, Healey JH, LaQuaglia MP, Huvos AG and Meyers PA: Treatment
of osteosarcoma at first recurrence after contemporary therapy: The
memorial sloan-kettering cancer center experience. Cancer.
104:2214–2221. 2005. View Article : Google Scholar : PubMed/NCBI
|
33
|
He H, Ni J and Huang J: Molecular
mechanisms of chemoresistance in osteosarcoma (Review). Oncol Lett.
7:1352–1362. 2014.PubMed/NCBI
|
34
|
Mougeot JL, Li Z, Price AE, Wright FA and
Brooks BR: Microarray analysis of peripheral blood lymphocytes form
ALS patients and the SAFE detection of the KEGG ALS pathway. BMC
Med Genomics. 25:74–80. 2011. View Article : Google Scholar
|
35
|
Morgan DO: Principles of CDK regulation.
Nature. 374:131–134. 1995. View
Article : Google Scholar : PubMed/NCBI
|
36
|
Benson C, Kaye S, Workman P, Garrett M,
Walton M and de Bono J: Clinical anticancer drug development:
Targeting the cyclin-dependent kinases. Br J Cancer. 92:7–12. 2005.
View Article : Google Scholar
|
37
|
Liu L, Xu Y and Reiter RJ: Melatonin
inhibits the proliferation of human osteosarcoma cell line MG-63.
Bone. 55:432–438. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kang J, Sergio CM, Sutherland RL and
Musgrove EA: Targeting cyclin-dependent kinase 1 (CDK1) but not
CDK4/6 or CDK2 is selectively lethal to MYC-dependent human breast
cancer cells. BMC Cancer. 14:322014. View Article : Google Scholar : PubMed/NCBI
|