1
|
Kuttan G, Pratheeshkumar P, Manu KA and
Kuttan R: Inhibition of tumor progression by naturally occurring
terpenoids. Pharm Biol. 49:995–1007. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Pratheeshkumar P, Sreekala C, Zhang Z,
Budhraja A, Ding S, Son YO, Wang X, Hitron A, Hyun-Jung K, Wang L,
et al: Cancer prevention with promising natural products:
Mechanisms of action and molecular targets. Anticancer Agents Med
Chem. 12:1159–1184. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Larson AJ, Symons JD and Jalili T:
Therapeutic potential of quercetin to decrease blood pressure:
Review of efficacy and mechanisms. Adv Nutr. 3:39–46. 2012.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Okamoto T: Safety of quercetin for
clinical application (Review). Int J Mol Med. 16:275–278.
2005.PubMed/NCBI
|
5
|
Formica JV and Regelson W: Review of the
biology of Quercetin and related bioflavonoids. Food Chem Toxicol.
33:1061–1080. 1995. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lee JC, Kim J, Park JK, Chung GH and Jang
YS: The antioxidant, rather than prooxidant, activities of
quercetin on normal cells: Quercetin protects mouse thymocytes from
glucose oxidase-mediated apoptosis. Exp Cell Res. 291:386–397.
2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Liesveld JL, Abboud CN, Lu C, McNair C,
Menon A, Smith A, Rosell K and Rapoport AP: Flavonoid effects on
normal and leukemic cells. Leuk Res. 27:517–527. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Cheng S, Gao N, Zhang Z, Chen G, Budhraja
A, Ke Z, Son YO, Wang X, Luo J and Shi X: Quercetin induces
tumor-selective apoptosis through downregulation of Mcl-1 and
activation of Bax. Clin Cancer Res. 16:5679–5691. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kang TB and Liang NC: Studies on the
inhibitory effects of quercetin on the growth of HL-60 leukemia
cells. Biochem Pharmacol. 54:1013–1018. 1997. View Article : Google Scholar : PubMed/NCBI
|
10
|
Román-Gómez J, Cordeu L, Agirre X,
Jiménez-Velasco A, San José-Eneriz E, Garate L, Calasanz MJ,
Heiniger A, Torres A and Prosper F: Epigenetic regulation of
Wnt-signaling pathway in acute lymphoblastic leukemia. Blood.
109:3462–3469. 2007. View Article : Google Scholar
|
11
|
Kimura A: Radiation associated leukemia
and myelodysplastic syndrome. Nihon Rinsho. 70:431–435. 2012.In
Chinese. PubMed/NCBI
|
12
|
Noshchenko AG, Bondar OY and Drozdova VD:
Radiation-induced leukemia among children aged 0–5 years at the
time of the Chernobyl accident. Int J Cancer. 127:412–426.
2010.
|
13
|
Malagoli C, Malavolti M, Costanzini S,
Fabbri S, Tezzi S, Palazzi G, Arcolin E and Vinceti M: Increased
incidence of childhood leukemia in urban areas: a population-based
case-control study. Epidemiol Prev. 39:102–107. 2015.PubMed/NCBI
|
14
|
Garcia-Perez J, López-Abente G,
Gómez-Barroso D, Morales-Piga A, Romaguera EP, Tamayo I,
Fernández-Navarro P and Ramis R: Childhood leukemia and residential
proximity to industrial and urban sites. Environ Res. 140:542–553.
2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zeeshan R, Sultan S, Irfan SM, Kakar J and
Hameed MA: Clinico-hematological profile of patients with B-chronic
lymphoid leukemia in Pakistan. Asian Pac J Cancer Prev. 16:793–796.
2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Khalafalla MM, Abdellatef E, Daffalla HM,
et al: Antileukemia activity from root cultures of Vernonia
amygdalina. J Med Plants Res. 3:556–562. 2009.
|
17
|
Bukau B and Horwich AL: The Hsp70 and
Hsp60 chaperone machines. Cell. 92:351–366. 1998. View Article : Google Scholar : PubMed/NCBI
|
18
|
Polla BS, Kantengwa S, Gleich GJ, Kondo M,
Reimert CM and Junod AF: Spontaneous heat shock protein synthesis
by alveolar macrophages in interstitial lung disease associated
with phagocytosis of eosinophils. Eur Respir J. 6:483–488.
1993.PubMed/NCBI
|
19
|
Taba K, Kuramitsu Y, Ryozawa S, Yoshida K,
Tanaka T, Maehara S, Maehara Y, Sakaida I and Nakamura K:
Heat-shock protein 27 is phosphorylated in gemcitabine-resistant
pancreatic cancer cells. Anticancer Res. 30:2539–2543.
2010.PubMed/NCBI
|
20
|
Carper SW, Duffy JJ and Gerner EW: Heat
shock proteins in thermotolerance and other cellular processes.
Cancer Res. 47:5249–5255. 1987.PubMed/NCBI
|
21
|
Ricci JE, Maulon L, Battaglione-Hofman V,
Bertolotto C, Luciano F, Mari B, Hofman P and Auberger P: A Jurkat
T cell variant resistant to death receptor-induced apoptosis.
Correlation with heat shock protein (Hsp) 27 and 70 levels. Eur
Cytokine Netw. 12:126–134. 2001.PubMed/NCBI
|
22
|
Pandey P, Farber R, Nakazawa A, Kumar S,
Bharti A, Nalin C, Weichselbaum R, Kufe D and Kharbanda S: Hsp27
functions as a negative regulator of cytochrome c-dependent
activation of procaspase-3. Oncogene. 19:1975–1981. 2000.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Garrido C, Ottavi P, Fromentin A, Hammann
A, Arrigo AP, Chauffert B and Mehlen P: HSP27 as a mediator of
confluence-dependent resistance to cell death induced by anticancer
drugs. Cancer Res. 57:2661–2667. 1997.PubMed/NCBI
|
24
|
Garrido C, Bruey JM, Fromentin A, Hammann
A, Arrigo AP and Solary E: HSP27 inhibits cytochrome c-dependent
activation of procaspase-9. FASEB J. 13:2061–2070. 1999.PubMed/NCBI
|
25
|
Piantelli M, Tatone D, Castrilli G, Savini
F, Maggiano N, Larocca LM, Ranelletti FO and Natali PG: Quercetin
and tamoxifen sensitize human melanoma cells to hyperthermia.
Melanoma Res. 11:469–476. 2001. View Article : Google Scholar : PubMed/NCBI
|
26
|
Jakubowicz-Gil J, Rzymowska J and Gawron
A: Quercetin, apoptosis, heat shock. Biochem Pharmacol.
64:1591–1595. 2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chen SF, Nieh S, Jao SW, Liu CL, Wu CH,
Chang YC, Yang CY and Lin YS: Quercetin suppresses drug-resistant
spheres via the p38 MAPK-Hsp27 apoptotic pathway in oral cancer
cells. PLoS One. 7:e492752012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhou H and Huang S: Role of mTOR signaling
in tumor cell motility, invasion and metastasis. Curr Protein Pept
Sci. 12:30–42. 2011. View Article : Google Scholar
|
29
|
Efeyan A and Sabatini DM: mTOR and cancer:
Many loops in one pathway. Curr Opin Cell Biol. 22:169–176. 2010.
View Article : Google Scholar :
|
30
|
Pratheeshkumar P, Budhraja A, Son YO, Wang
X, Zhang Z, Ding S, Wang L, Hitron A, Lee JC, Xu M, et al:
Quercetin inhibits angiogenesis mediated human prostate tumor
growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signaling
pathways. PLoS One. 7:e475162012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Bruning A: Inhibition of mTOR signaling by
quercetin in cancer treatment and prevention. Anticancer Agents Med
Chem. 13:1025–1031. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
O'Callaghan-Sunol C, Gabai VL and Sherman
MY: Hsp27 modulates p53 signaling and suppresses cellular
senescence. Cancer Res. 67:11779–11788. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Niu G, Yin S, Xie S, Li Y, Nie D, Ma L,
Wang X and Wu Y: Quercetin induces apoptosis by activating
caspase-3 and regulating Bcl-2 and cyclooxygenase-2 pathways in
human HL-60 cells. Acta Biochim Biophys Sin (Shanghai). 43:30–37.
2011. View Article : Google Scholar
|
34
|
Mahbub AA, Le Maitre CL, Haywood-Small SL,
McDougall GJ, Cross NA and Jordan-Mahy N: Differential effects of
polyphenols on proliferation and apoptosis in human myeloid and
lymphoid leukemia cell lines. Anticancer Agents Med Chem.
13:1601–1613. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hansel DE, Platt E, Orloff M, Harwalker J,
Sethu S, Hicks JL, De Marzo A, Steinle RE, Hsi ED, Theodorescu D,
et al: Mammalian target of rapamycin (mTOR) regulates cellular
proliferation and tumor growth in urothelial carcinoma. Am J
Pathol. 176:3062–3072. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Osorio LM, Jondal M and Aguilar-Santelises
M: Regulation of B-CLL apoptosis through membrane receptors and
Bcl-2 family proteins. Leuk Lymphoma. 30:247–256. 1998.PubMed/NCBI
|
37
|
Podhorecka M, Halicka D, Klimek P, Kowal
M, Chocholska S and Dmoszynska A: Simvastatin and purine analogs
have a synergic effect on apoptosis of chronic lymphocytic leukemia
cells. Ann Hematol. 89:1115–1124. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Malumbres M and Barbacid M: Cell cycle,
CDKs and cancer: A changing paradigm. Nat Rev Cancer. 9:153–166.
2009. View
Article : Google Scholar : PubMed/NCBI
|
39
|
Evans T, Rosenthal ET, Youngblom J, Distel
D and Hunt T: Cyclin: A protein specified by maternal mRNA in sea
urchin eggs that is destroyed at each cleavage division. Cell.
33:389–396. 1983. View Article : Google Scholar : PubMed/NCBI
|
40
|
Hwang A, Maity A, McKenna WG and Muschel
RJ: Cell cycle-dependent regulation of the cyclin B1 promoter. J
Biol Chem. 270:28419–28424. 1995. View Article : Google Scholar : PubMed/NCBI
|
41
|
Hartwell LH and Kastan MB: Cell cycle
control and cancer. Science. 266:1821–1828. 1994. View Article : Google Scholar : PubMed/NCBI
|
42
|
Yuan J, Kramer A, Matthess Y, Yan R,
Spänkuch B, Gätje R, Knecht R, Kaufmann M and Strebhardt K: Stable
gene silencing of cyclin B1 in tumor cells increases susceptibility
to taxol and leads to growth arrest in vivo. Oncogene.
25:1753–1762. 2006. View Article : Google Scholar
|
43
|
Nakata Y, Shetzline S, Sakashita C, Kalota
A, Rallapalli R, Rudnick SI, Zhang Y, Emerson SG and Gewirtz AM:
c-Myb contributes to G2/M cell cycle transition in human
hematopoietic cells by direct regulation of cyclin B1 expression.
Mol Cell Biol. 27:2048–2058. 2007. View Article : Google Scholar : PubMed/NCBI
|
44
|
Donnellan R and Chetty R: Cyclin D1 and
human neoplasia. Mol Pathol. 51:1–7. 1998. View Article : Google Scholar : PubMed/NCBI
|
45
|
Becker PS: Dependence of acute myeloid
leukemia on adhesion within the bone marrow microenvironment.
Scientific World Journal. 2012:8564672012. View Article : Google Scholar : PubMed/NCBI
|
46
|
Koukoulis GK, Patriarca C and Gould VE:
Adhesion molecules and tumor metastasis. Hum Pathol. 29:889–892.
1998. View Article : Google Scholar : PubMed/NCBI
|
47
|
Hazlehurst LA, Valkov N, Wisner L, Storey
JA, Boulware D, Sullivan DM and Dalton WS: Reduction in
drug-induced DNA double-strand breaks associated with beta1
integrin-mediated adhesion correlates with drug resistance in U937
cells. Blood. 98:1897–1903. 2001. View Article : Google Scholar : PubMed/NCBI
|
48
|
Folkman J: Role of angiogenesis in tumor
growth and metastasis. Semin Oncol. 29(Suppl 6): S15–S18. 2002.
View Article : Google Scholar
|
49
|
Dai Y, Xu M, Wang Y, Pasha Z, Li T and
Ashraf M: HIF-1alpha induced-VEGF overexpression in bone marrow
stem cells protects cardiomyocytes against ischemia. J Mol Cell
Cardiol. 42:1036–1044. 2007. View Article : Google Scholar : PubMed/NCBI
|
50
|
Sasabe E, Tatemoto Y, Li D, Yamamoto T and
Osaki T: Mechanism of HIF-1alpha-dependent suppression of
hypoxia-induced apoptosis in squamous cell carcinoma cells. Cancer
Sci. 96:394–402. 2005. View Article : Google Scholar : PubMed/NCBI
|
51
|
Gao N, Flynn DC, Zhang Z, Zhong XS, Walker
V, Liu KJ, Shi X and Jiang BH: G1 cell cycle progression and the
expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1
signaling in human ovarian cancer cells. Am J Physiol Cell Physiol.
287:C281–C291. 2004. View Article : Google Scholar : PubMed/NCBI
|
52
|
Rong Y, Yang EB, Zhang K and Mack P:
Quercetin-induced apoptosis in the monoblastoid cell line U937 in
vitro and the regulation of heat shock proteins expression.
Anticancer Res. 20(6B): 4339–4345. 2000.
|
53
|
Scambia G, Ranelletti FO, Panici PB, De
Vincenzo R, Bonanno G, Ferrandina G, Piantelli M, Bussa S, Rumi C
and Cianfriglia M: Quercetin potentiates the effect of adriamycin
in a multidrug-resistant MCF-7 human breast-cancer cell line:
P-glycoprotein as a possible target. Cancer Chemother Pharmacol.
34:459–464. 1994. View Article : Google Scholar : PubMed/NCBI
|
54
|
Volate SR, Davenport DM, Muga SJ and
Wargovich MJ: Modulation of aberrant crypt foci and apoptosis by
dietary herbal supplements (quercetin, curcumin, silymarin, ginseng
and rutin). Carcinogenesis. 26:1450–1456. 2005. View Article : Google Scholar : PubMed/NCBI
|
55
|
Zwaan CM, Kolb EA, Reinhardt D,
Abrahamsson J, Adachi S, Aplenc R, De Bont ES, De Moerloose B,
Dworzak M, Gibson BE, et al: Collaborative Efforts Driving Progress
in Pediatric Acute Myeloid Leukemia. J Clin Oncol. 33:2949–2962.
2015. View Article : Google Scholar : PubMed/NCBI
|
56
|
Katz AJ, Chia VM, Schoonen WM and Kelsh
MA: Acute lymphoblastic leukemia: an assessment of international
incidence, survival, and disease burden. Cancer Causes Control.
26:1627–1642. 2015. View Article : Google Scholar : PubMed/NCBI
|
57
|
Gregoire M, Ligeza-Poisson C,
Juge-Morineau N and Spisek R: Anti-cancer therapy using dendritic
cells and apoptotic tumour cells: pre-clinical data in human
mesothelioma and acute myeloid leukaemia. Vaccine. 21:791–794.
2003. View Article : Google Scholar : PubMed/NCBI
|
58
|
Schmidt T and Carmeliet P: Angiogenesis: A
target in solid tumors, also in leukemia? Hematology Am Soc Hematol
Educ Program. 2011:1–8. 2011. View Article : Google Scholar : PubMed/NCBI
|
59
|
Trujillo A, McGee C and Cogle CR:
Angiogenesis in acute myeloid leukemia and opportunities for novel
therapies. J Oncol. 2012:1286082012. View Article : Google Scholar
|
60
|
Kampen KR, Ter Elst A and de Bont ES:
Vascular endothelial growth factor signaling in acute myeloid
leukemia. Cell Mol Life Sci. 70:1307–1317. 2013. View Article : Google Scholar
|
61
|
Neri LM, Cani A, Martelli AM, Simioni C,
Junghanss C, Tabellini G, Ricci F, Tazzari PL, Pagliaro P, McCubrey
JA and Capitani S: Targeting the PI3K/Akt/mTOR signaling pathway in
B-precursor acute lymphoblastic leukemia and its therapeutic
potential. Leukemia. 28:739–748. 2014. View Article : Google Scholar
|
62
|
Wang K, Liu R, Li J, Mao J, Lei Y, Wu J,
Zeng J, Zhang T, Wu H, Chen L, et al: Quercetin induces protective
autophagy in gastric cancer cells: Involvement of Akt-mTOR- and
hypoxia-induced factor 1α-mediated signaling. Autophagy. 7:966–978.
2011. View Article : Google Scholar : PubMed/NCBI
|
63
|
Alayev A and Holz MK: mTOR signaling for
biological control and cancer. J Cell Physiol. 228:1658–1664. 2013.
View Article : Google Scholar : PubMed/NCBI
|