1
|
Sohawon D, Lau KK, Lau T and Bowden DK:
Extra medullary haematopoiesis: a pictorial review of its typical
and atypical locations. J Med Imaging Radiat Oncol. 56:534–538.
2012. View Article : Google Scholar
|
2
|
Tsamandas AC, Jain AB, Raikow RB, Demetris
AJ, Nalesnik MA and Randhawa PS: Extramedullary hematopoiesis in
the allograft liver. Mod Pathol. 8:671–674. 1995.PubMed/NCBI
|
3
|
Vassiliou V, Papamichael D, Lutz S,
Eracleous E, Kountourakis P, Polyviou P, Michaelides I, Shoukris M
and Andreopoulos D: Presacral extramedullary hematopoiesis in a
patient with eectal adenocarcinoma: report of a case and literature
review. J Gastrointest Cancer Feb. 10:2012.Epub ahead of print.
|
4
|
Macki M, Bydon M, Papademetriou K,
Gokaslan Z and Bydon A: Presacral extramedullary hematopoiesis: an
alternative hypothesis. J Clin Neurosci. 20:1664–1668. 2013.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Johns JL and Christopher MM:
Extramedullary hematopoiesis: a new look at the underlying stem
cell niche, theories of development and occurrence in animals. Vet
Pathol. 49:508–523. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Mendelson A and Frenette PS: Hematopoietic
stem cell niche maintenance during homeostasis and regeneration.
Nat Med. 20:833–846. 2014. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Flores-Figueroa E, Varma S, Montgomery K,
et al: Distinctive contact between CD34+hematopoietic progenitors
and CXCL12+CD271+mesenchymal stromal cells in benign and
myelodysplastic bone marrow. Lab Invest. 92:1330–1341. 2012.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Lilly AJ, Johnson WE and Bunce CM: The
haematopoietic stem cell niche: new insights into the mechanisms
regulating haematopoietic stem cell behaviour. Stem Cells Int.
274564:2011.
|
9
|
Lo Celso C, Fleming HE, Wu JW, et al:
Live-animal tracking of individual haematopoietic stem/progenitor
cells in their niche. Nature. 457:92–96. 2009. View Article : Google Scholar
|
10
|
Kiel MJ and Morrison SJ: Uncertainty in
the niches that maintain haematopoietic stem cells. Nat Rev
Immunol. 8:290–301. 2008. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Ding L, Saunders TL, Enikolopov G and
Morrison SJ: Endothelial and perivascular cells maintain
haematopoietic stem cells. Nature. 481:457–462. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Levesque JP and Winkler IG: Hierarchy of
immature hematopoietic cells related to blood flow and niche. Curr
Opin Hematol. 18:220–225. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nagasawa T, Omatsu Y and Sugiyama T:
Control of hematopoietic stem cells by the bone marrow stromal
niche: the role of reticular cells. Trends Immunol. 32:315–320.
2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Mendez-Ferrer S, Michurina TV, Ferraro F,
et al: Mesenchymal and haematopoietic stem cells form a unique bone
marrow niche. Nature. 466:829–834. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yamazaki S, Ema H, Karlsson G, et al:
Nonmyelinating Schwann cells maintain hematopoietic stem cell
hibernation in the bone marrow niche. Cell. 147:1146–1158. 2011.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Avecilla ST, Hattori K, Heissig B, et al:
Chemokine-mediated interaction of hematopoietic progenitors with
the bone marrow vascular niche is required for thrombopoiesis. Nat
Med. 10:64–71. 2004. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Ara T, Tokoyoda K, Sugiyama T, et al:
Long-term hematopoietic stem cells require stromal cell-derived
factor-1 for colonizing bone marrow during ontogeny. Immunity.
19:257–267. 2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ellyard JI, Avery DT, Mackay CR, et al:
Contribution of stromal cells to the migration, function and
retention of plasma cells in human spleen: potential roles of
CXCL12, IL-6 and CD54. Eur J Immunol. 35:699–708. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Miwa Y, Hayashi T, Suzuki S, Abe S, Onishi
I, Kirimura S, Kitagawa M and Kurata M: Up-regulated expression of
CXCL12 in human spleens with extramedullary haematopoiesis.
Pathology. 45:408–416. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Visnjic D, Kalajzic Z, Rowe DW, et al:
Hematopoiesis is severely altered in mice with an induced
osteoblast deficiency. Blood. 103:3258–3264. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wolf BC and Neiman RS: Hypothesis: splenic
filtration and the pathogenesis of extramedullary hematopoiesis in
agnogenic myeloid metaplasia. Hematol Pathol. 1:77–80.
1987.PubMed/NCBI
|
22
|
MacSween RMN, Burt AD, Portmann BC, et al:
Pathology of the Liver, 4th ed. Diagn Cytopathol. 29:432003.
View Article : Google Scholar
|
23
|
Schlitt HJ, Schäfers S, Deiwick A, Eckardt
KU, Pietsch T, Ebell W, Nashan B, Ringe B, Wonigeit K and Pichlmayr
R: Extramedullary erythropoiesis in human liver grafts. Hepatology.
21:689–696. 1995. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tsamandas AC, Jain AB, Raikow RB, Demetris
AJ, Nalesnik MA and Randhawa PS: Extramedullary hematopoiesis in
the allograft liver. Mod Pathol. 8:671–674. 1995.PubMed/NCBI
|
25
|
Craig CE, Quaglia A and Dhillon AP:
Extramedullary haematopoiesis in massive hepatic necrosis.
Histopathology. 45:518–525. 2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sohawon D, Lau KK, Lau T and Bowden DK:
Extra-medullary haematopoiesis: a pictorial review of its typical
and atypical locations. J Med Imaging Radiat Oncol. 56:538–534.
2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
O'Malley DP: Benign extramedullary myeloid
proliferations. Mod Pathol. 20:405–415. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Tavian M, Biasch K, Sinka L, Vallet J and
Péault B: Embryonic origin of human hematopoiesis. Int J Dev Biol.
54:1061–1065. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tavian M, Cortés F, Charbord P, Labastie
MC and Péault B: Emergence of the haematopoietic system in the
human embryo and foetus. Haematologica. 84(Suppl EHA-4): 1–3.
1999.
|
30
|
Georgiades CS, Neyman EG, Francis IR,
Sneider MB and Fishman EK: Typical and atypical presentations of
extramedullary hemopoiesis. AJR Am J Roentgenol. 179:1239–1243.
2002. View Article : Google Scholar : PubMed/NCBI
|
31
|
Tavian M and Péault B: The changing
cellular environments of hematopoiesis in human development in
utero. Exp Hematol. 33:1062–1069. 2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Palatnik A, Narayan R and Walters M:
Extramedullary hematopoiesis involving uterus, fallopian tubes, and
ovaries, mimicking bilateral tuboovarian abscesses. Int J Gynecol
Pathol. 31:584–587. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Akbulut S, Yavuz R, Akansu B, Sogutcu N,
Arikanoglu Z and Basbug M: Ectopic bone formation and
extramedullary hematopoiesis in the thyroid gland: report of a case
and literature review. Int Surg. 96:260–265. 2011. View Article : Google Scholar
|
34
|
Radopoulos D, Tzakas K and Tahmatzopoulos
A: A rare case of renal oncocytoma associated with erythrocytosis:
case report. BMC Urol. 23:262006. View Article : Google Scholar
|
35
|
Tavian M and Péault B: Embryonic
development of the human hematopoietic system. Int J Dev Biol.
49:243–250. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Neiman RS, Barcos M, Berard C, Bonner H,
Mann R, Rydell RE and Bennett JM: Granulocytic sarcoma: a
clinicopathologic study of 61 biopsied cases. Cancer. 48:1426–1437.
1981. View Article : Google Scholar : PubMed/NCBI
|
37
|
Tavassoli M and Weiss L: An electron
microscopic study of spleen in myelofibrosis with myeloid
metaplasia. Blood. 42:267–279. 1973.PubMed/NCBI
|
38
|
Yoshida H, Kawane K, Koike M, et al:
Phosphatidylserine-dependent engulfment by macrophages of nuclei
from erythroid precursor cells. Nature. 437:754–758. 2005.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Chasis JA and Mohandas N: Erythroblastic
islands: niches for erythropoiesis. Blood. 112:470–478. 2008.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Sadahira Y and Mori M: Role of the
macrophage in erythropoiesis. Pathol Int. 49:841–848. 1999.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Sonoda Y and Sasaki K: Surface morphology
of the central macrophages of erythroblastic islets in the spleen
of aged and pregnant mice: an immunohistochemical light microscopic
study. Arch Histol Cytol. 71:155–161. 2008. View Article : Google Scholar
|
42
|
Sonoda Y: Immunophenotype and functional
characteristics of human primitive CD34-negative hematopoietic stem
cells: the significance of the intra-bone marrow injection. J
Autoimmun. 30:136–144. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
De Jong MO, Wagemaker G and Wognum AW:
Separation of myeloid and erythroid progenitors based on expression
of CD34 and c-kit. Blood. 86:4076–4085. 1995.PubMed/NCBI
|
44
|
Cesta MF: Normal structure, function and
histology of the spleen. Toxicol Pathol. 34:455–465. 2006.
View Article : Google Scholar
|
45
|
Mebius RE and Kraal G: Structure and
function of the spleen. Nat Rev Immunol. 5:606–616. 2005.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Mueller SN and Ahmed R: Lymphoid stroma in
the initiation and control of immune responses. Immunol Rev.
224:284–294. 2008. View Article : Google Scholar : PubMed/NCBI
|
47
|
Asakura A and Rudnicki MA: Side population
cells from diverse adult tissues are capable of in vitro
hematopoietic differentiation. Exp Hematol. 30:1339–1345. 2002.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Saito H, Yokoi Y, Watanabe S, et al:
Reticular meshwork of the spleen in rats studied by electron
microscopy. Am J Anat. 181:235–252. 1988. View Article : Google Scholar : PubMed/NCBI
|
49
|
Wright DE, Wagers AJ, Gulati AP, et al:
Physiological migration of hematopoietic stem and progenitor cells.
Science. 294:1933–1936. 2001. View Article : Google Scholar : PubMed/NCBI
|
50
|
Stroncek D, Shawker T, Follmann D and
Leitman SF: G-CSF-induced spleen size changes in peripheral blood
progenitor cell donors. Transfusion. 43:609–613. 2003. View Article : Google Scholar : PubMed/NCBI
|
51
|
Picardi M, De Rosa G, Selleri C, Scarpato
N, Soscia E, Martinelli V, Ciancia R and Rotoli B: Spleen
enlargement following recombinant human granulocyte
colony-stimulating factor administration for peripheral blood stem
cell mobilization. Haematologica. 88:794–800. 2003.PubMed/NCBI
|
52
|
O'Neill HC, Griffiths KL, Periasamy P, et
al: Spleen as a site for hematopoiesis of a distinct antigen
presenting cell type. Stem Cells Int. 954275:2011.
|
53
|
Sivasubramaniyan K, Lehnen D, Ghazanfari
R, Sobiesiak M, Harichandan A, Mortha E, Petkova N, Grimm S,
Cerabona F, de Zwart P, et al: Phenotypic and functional
heterogeneity of human bone marrow- and amnion-derived MSC subsets.
Ann NY Acad Sci. 1266:94–106. 2012. View Article : Google Scholar : PubMed/NCBI
|
54
|
Lucas D, Scheiermann C, Chow A, Kunisaki
Y, Bruns I, Barrick C, Tessarollo L and Frenette PS:
Chemotherapy-induced bone marrow nerve injury impairs hematopoietic
regeneration. Nat Med. 19:695–703. 2013. View Article : Google Scholar : PubMed/NCBI
|
55
|
Ding L and Morrison SJ: Haematopoietic
stem cells and early lymphoid progenitors occupy distinct bone
marrow niches. Nature. 495:231–235. 2013. View Article : Google Scholar : PubMed/NCBI
|
56
|
Chute JP: Stem cell homing. Curr Opin
Hematol. 13:399–406. 2006. View Article : Google Scholar : PubMed/NCBI
|
57
|
Jamieson CH, Barroga CF and Vainchenker
WP: Miscreant myeloproliferative disorder stem cells. Leukemia.
22:2011–2019. 2008. View Article : Google Scholar : PubMed/NCBI
|