bZIP transmembrane transcription factor CREBH: Potential role in non‑alcoholic fatty liver disease (Review)
- Authors:
- Min Wang
- Shuiping Zhao
- Mingyue Tan
-
Affiliations: Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China - Published online on: December 30, 2015 https://doi.org/10.3892/mmr.2015.4749
- Pages: 1455-1462
This article is mentioned in:
Abstract
Fujimoto M and Hayashi T: New insights into the role of mitochondria-associated endoplasmic reticulum membrane. Int Rev Cell Mol Biol. 292:73–117. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wagner M and Moore DD: Endoplasmic reticulum stress and glucose homeostasis. Curr Opin Clin Nutr Metab Care. 14:367–373. 2011. View Article : Google Scholar : PubMed/NCBI | |
Esposito V, Grosjean F, Tan J, Huang L, Zhu L, Chen J, Xiong H, Striker GE and Zheng F: CHOP deficiency results in elevated lipopolysaccharide-induced inflammation and kidney injury. Am J Physiol Renal Physiol. 304:F440–F450. 2013. View Article : Google Scholar : | |
Benali-Furet NL, Chami M, Houel L, De Giorgi F, Vernejoul F, Lagorce D, Buscail L, Bartenschlager R, Ichas F, Rizzuto R and Paterlini-Bréchot P: Hepatitis C virus core triggers apoptosis in liver cells by inducing ER stress and ER calcium depletion. Oncogene. 24:4921–4933. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ozcan U, Cao Y, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Görgün C, Glimcher LH and Hotamisligil GS: Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 306:457–461. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ji C and Kaplowitz NL: Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice. Gastroenterology. 124:1488–1499. 2003. View Article : Google Scholar : PubMed/NCBI | |
Duvigneau JC, Kozlov AV, Zifko C, Postl A, Hartl RT, Miller I, Gille L, Staniek K, Moldzio R, Gregor W, et al: Reperfusion does not induce oxidative stress but sustained endoplasmic reticulum stress in livers of rats subjected to traumatic-hemorrhagic shock. Shock. 33:289–298. 2010. View Article : Google Scholar | |
Emadali A, Nguyên DT, Rochon C, Tzimas GN, Metrakos PP and Chevet E: Distinct endoplasmic reticulum stress responses are triggered during human liver transplantation. J Pathol. 207:111–118. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kim TH, Kim YW, Shin SM, Kim CW, Yu IJ and Kim SG: Synergistic hepatotoxicity of N,N-dimethylformamide with carbon tetrachloride in association with endoplasmic reticulum stress. Chem Biol Interact. 184:492–501. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ron D: Translational control in the endoplasmic reticulum stress response. J Clin Invest. 110:1383–1388. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kaufman RJ: Orchestrating the unfolded protein response in health and disease. J Clin Invest. 110:1389–1398. 2002. View Article : Google Scholar : PubMed/NCBI | |
Schröder M and Kaufman RJ: ER stress and the unfolded protein response. Mutat Res. 569:29–63. 2005. View Article : Google Scholar | |
Omori Y, Imai J, Watanabe M, Komatsu T, Suzuki Y, Kataoka K, Watanabe S, Tanigami A and Sugano S: CREB-H: A novel mammalian transcription factor belonging to the CREB/ATF family and functioning via the box-B element with a liver-specific expression. Nucleic Acids Res. 29:2154–2162. 2001. View Article : Google Scholar : PubMed/NCBI | |
DenBoer LM, Hardy-Smith PW, Hogan MR, Cockram GP, Audas TE and Lu R: Luman is capable of binding and activating transcription from the unfolded protein response element. Biochem Biophys Res Commun. 331:113–119. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liang G, Audas TE, Li Y, Cockram GP, Dean JD, Martyn AC, Kokame K and Lu R: Luman/CREB3 induces transcription of the endoplasmic reticulum (ER) stress response protein Herp through an ER stress response element. Mol Cell Biol. 26:7999–8010. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kondo S, Murakami T, Tatsumi K, Ogata M, Kanemoto S, Otori K, Iseki K, Wanaka A and Imaizumi K: OASIS, a CREB/ATF-family member, modulates UPR signalling in astrocytes. Nat Cell Biol. 7:186–194. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kondo S, Saito A, Hino S, Murakami T, Ogata M, Kanemoto S, Nara S, Yamashita A, Yoshinaga K, Hara H and Imaizumi K: BBF2H7, a novel transmembrane bZIP transcription factor, is a new type of endoplasmic reticulum stress transducer. Mol Cell Biol. 27:1716–1729. 2007. View Article : Google Scholar : | |
Nagamori I, Yabuta N, Fujii T, Tanaka H, Yomogida K, Nishimune Y and Nojima H: Tisp40, a spermatid specific bZip transcription factor, functions by binding to the unfolded protein response element via the Rip pathway. Genes Cells. 10:575–594. 2005. View Article : Google Scholar : PubMed/NCBI | |
Stirling J and O'Hare P: CREB4, a transmembrane bZip transcription factor and potential new substrate for regulation and cleavage by S1P. Mol Biol Cell. 17:413–426. 2006. View Article : Google Scholar : | |
Luebke-Wheeler J, Zhang K, Battle M, Si-Tayeb K, Garrison W, Chhinder S, Li J, Kaufman RJ and Duncan SA: Hepatocyte nuclear factor 4alpha is implicated in endoplasmic reticulum stress-induced acute phase response by regulating expression of cyclic adenosine monophosphate responsive element binding protein H. Hepatology. 48:1242–1250. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bailey D, Barreca C and O'Hare P: Trafficking of the bZIP transmembrane transcription factor CREB-H into alternate pathways of ERAD and stress-regulated intramembrane proteolysis. Traffic. 8:1796–1814. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Shen X, Wu J, Sakaki K, Saunders T, Rutkowski DT, Back SH and Kaufman RJ: Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell. 124:587–599. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bailey D and O'Hare P: Transmembrane bZIP transcription factors in ER stress signaling and the unfolded protein response. Antioxid Redox Signal. 9:2305–2321. 2007. View Article : Google Scholar : PubMed/NCBI | |
Asada R, Kanemoto S, Kondo S, Saito A and Imaizumi K: The signalling from endoplasmic reticulum-resident bZIP transcription factors involved in diverse cellular physiology. J Biochem. 149:507–518. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chan CP, Mak TY, Chin KT, Ng IO and Jin DY: N-linked glycosylation is required for optimal proteolytic activation of membrane-bound transcription factor CREB-H. J Cell Sci. 123:1438–1448. 2010. View Article : Google Scholar : PubMed/NCBI | |
Barbosa S, Fasanella G, Carreira S, Llarena M, Fox R, Barreca C, Andrew D and O'Hare P: An orchestrated program regulating secretory pathway genes and cargos by the transmembrane transcription factor CREB-H. Traffic. 14:382–398. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vecchi C, Montosi G, Zhang K, Lamberti I, Duncan SA, Kaufman RJ and Pietrangelo A: ER stress controls iron metabolism through induction of hepcidin. Science. 325:877–880. 2009. View Article : Google Scholar : PubMed/NCBI | |
Llarena M, Bailey D, Curtis H and O'Hare P: Different mechanisms of recognition and ER retention by transmembrane transcription factors CREB-H and ATF6. Traffic. 11:48–69. 2010. View Article : Google Scholar | |
Vecchi C, Montosi G, Garuti C, Corradini E, Sabelli M, Canali S and Pietrangelo A: Gluconeogenic signals regulate iron homeostasis via hepcidin in mice. Gastroenterology. 146:1060–1069. 2014. View Article : Google Scholar | |
Lee MW, Chanda D, Yang J, Oh H, Kim SS, Yoon YS, Hong S, Park KG, Lee IK, Choi CS, et al: Regulation of hepatic gluconeogenesis by an ER-bound transcription factor, CREBH. Cell Metab. 11:331–339. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chanda D, Kim DK, Li T, Kim YH, Koo SH, Lee CH, Chiang JY and Choi HS: Cannabinoid receptor type 1 (CB1R) signaling regulates hepatic gluconeogenesis via induction of endoplasmic reticulum-bound transcription factor cAMP-responsive element-binding protein H (CREBH) in primary hepatocytes. J Biol Chem. 286:27971–27979. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chanda D, Kim YH, Kim DK, Lee MW, Lee SY, Park TS, Koo SH, Lee CH and Choi HS: Activation of cannabinoid receptor type 1 (Cb1r) disrupts hepatic insulin receptor signaling via cyclic AMP-response element-binding protein H (Crebh)-mediated induction of Lipin1 gene. J Biol Chem. 287:38041–38049. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Wang G, Zheng Z, Maddipati KR, Zhang X, Dyson G, Williams P, Duncan SA, Kaufman RJ and Zhang K: Endoplasmic reticulum-tethered transcription factor cAMP responsive element-binding protein, hepatocyte specific, regulates hepatic lipogenesis, fatty acid oxidation, and lipolysis upon metabolic stress in mice. Hepatology. 55:1070–1082. 2012. View Article : Google Scholar : | |
Lee JH, Giannikopoulos P, Duncan SA, Wang J, Johansen CT, Brown JD, Plutzky J, Hegele RA, Glimcher LH and Lee AH: The transcription factor cyclic AMP-responsive element-binding protein H regulates triglyceride metabolism. Nat Med. 17:812–815. 2011. View Article : Google Scholar : PubMed/NCBI | |
Misra J, Chanda D, Kim DK, Cho SR, Koo SH, Lee CH, Back SH and Choi HS: Orphan nuclear receptor Errγ induces C-reactive protein gene expression through induction of ER-bound Bzip transmembrane transcription factor CREBH. PLoS One. 9:e863422014. View Article : Google Scholar | |
Xu X, Park JG, So JS, Hur KY and Lee AH: Transcriptional regulation of apolipoprotein A-IV by the transcription factor CREBH. J Lipid Res. 55:850–859. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shin DY, Chung J, Joe Y, Pae HO, Chang KC, Cho GJ, Ryter SW and Chung HT: Pretreatment with CO-releasing molecules suppresses hepcidin expression during inflammation and endoplasmic reticulum stress through inhibition of the STAT3 and CREBH pathways. Blood. 119:2523–2532. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chanda D, Kim YH, Li T, Misra J, Kim DK, Kim JR, Kwon J, Jeong WI, Ahn SH, Park TS, et al: Hepatic cannabinoid receptor type 1 mediates alcohol-induced regulation of bile acid enzyme genes expression via CREBH. PLoS One. 8:e688452013. View Article : Google Scholar : PubMed/NCBI | |
Kim DK, Ryu D, Koh M, Lee MW, Lim D, Kim MJ, Kim YH, Cho WJ, Lee CH, Park TS, et al: Orphan nuclear receptor estrogen-related receptor γ (ERRγ) is key regulator of hepatic gluconeogenesis. J Biol Chem. 287:21628–21639. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim DK, Kim JR, Koh M, Kim YD, Lee JM, Chanda D, Park SB, Min JJ, Lee CH, Park TS, et al: Estrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of phosphatidic acid phosphatase, LIPIN1, and inhibits hepatic insulin signaling. J Biol Chem. 286:38035–38042. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim DK, Kim YH, Jang HH, Park J, Kim JR, Koh M, Jeong WI, Koo SH, Park TS, Yun CH, et al: Estrogen-related receptor γ controls hepatic CB1 receptor-mediated CYP2E1 expression and oxidative liver injury by alcohol. Gut. 62:1044–1054. 2013. View Article : Google Scholar | |
Xie YB, Park JH, Kim DK, Hwang JH, Oh S, Park SB, Shong M, Lee IK and Choi HS: Transcriptional corepressor SMILE recruits SIRT1 to inhibit nuclear receptor estrogen receptor-related receptor gamma transactivation. J Biol Chem. 284:28762–28774. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xie YB, Nedumaran B and Choi HS: Molecular characterization of SMILE as a novel corepressor of nuclear receptors. Nucleic Acids Res. 37:4100–4115. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lu R and Misra V: Zhangfei: A second cellular protein interacts with herpes simplex virus accessory factor HCF in a manner similar to Luman and VP16. Nucleic Acids Res. 28:2446–2454. 2000. View Article : Google Scholar : PubMed/NCBI | |
Xie YB, Lee OH, Nedumaran B, Seong HA, Lee KM, Ha H, Lee IK, Yun Y and Choi HS: SMILE, a new orphan nuclear receptor SHP-interacting protein, regulates SHP-repressed estrogen receptor transactivation. Biochem J. 416:463–473. 2008. View Article : Google Scholar : PubMed/NCBI | |
Misra J, Chanda D, Kim DK, Li T, Koo SH, Back SH, Chiang JY and Choi HS: Curcumin differentially regulates endoplasmic reticulum stress through transcriptional corepressor SMILE (small heterodimer partner-interacting leucine zipper protein)-mediated inhibition of CREBH (cAMP responsive element-binding protein H). J Biol Chem. 286:41972–41984. 2011. View Article : Google Scholar : PubMed/NCBI | |
Danno H, Ishii KA, Nakagawa Y, Mikami M, Yamamoto T, Yabe S, Furusawa M, Kumadaki S, Watanabe K, Shimizu H, et al: The liver-enriched transcription factor CREBH is nutritionally regulated and activated by fatty acids and PPARalpha. Biochem Biophys Res Commun. 391:1222–1227. 2010. View Article : Google Scholar | |
Gentile CL, Wang D, Pfaffenbach KT, Cox R, Wei Y and Pagliasotti MJ: Fatty acids regulate CREBh via transcriptional mechanisms that are dependent on proteasome activity and insulin. Mol Cell Biochem. 344:99–107. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vegiopoulos A and Herzig S: Glucocorticoids, metabolism and metabolic diseases. Mol Cell Endocrinol. 275:43–61. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wong SW, Kwon MJ, Choi AM, Kim HP, Nakahira K and Hwang DH: Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J Biol Chem. 284:27384–27392. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schaeffler A, Gross P, Buettner R, Bollheimer C, Buechler C, Neumeier M, Kopp A, Schoelmerich J and Falk W: Fatty acid-induced induction of Toll-like receptor-4/nuclear factor-kappaB pathway in adipocytes links nutritional signalling with innate immunity. Immunology. 126:233–245. 2009. View Article : Google Scholar : | |
Miura K and Ohnishi H: Role of gut microbiota and Toll-like receptors in nonalcoholic fatty liver disease. World J Gastroenterol. 20:7381–7391. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pineda Torra I, Jamshidi Y, Flavell DM, Fruchart JC and Staels B: Characterization of the human PPARalpha promoter: Identification of a functional nuclear receptor response element. Mol Endocrinol. 16:1013–1028. 2002.PubMed/NCBI | |
Hwang-Verslues WW and Sladek FM: HNF4α-role in drug metabolism and potential drug target? Curr Opin Pharmacol. 10:698–705. 2010. View Article : Google Scholar : PubMed/NCBI | |
Goldberg IJ, Scheraldi CA, Yacoub LK, Saxena U and Bisgaier CL: Lipoprotein ApoC-II activation of lipoprotein lipase. Modulation by apolipoprotein A-IV. J Biol Chem. 265:4266–4272. 1990.PubMed/NCBI | |
Jong MC, Hofker MH and Havekes LM: Role of ApoCs in lipoprotein metabolism: Functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol. 19:472–484. 1999. View Article : Google Scholar : PubMed/NCBI | |
Marçais C, Verges B, Charrière S, Pruneta V, Merlin M, Billon S, Perrot L, Drai J, Sassolas A, Pennacchio LA, et al: Apoa5 Q139X truncation predisposes to late-onset hyperchylomicronemia due to lipoprotein lipase impairment. J Clin Invest. 115:2862–2869. 2005. View Article : Google Scholar : PubMed/NCBI | |
Merkel M, Eckel RH and Goldberg IJ: Lipoprotein lipase: Genetics, lipid uptake, and regulation. J Lipid Res. 43:1997–2006. 2002. View Article : Google Scholar : PubMed/NCBI | |
Pennacchio LA, Olivier M, Hubacek JA, Cohen JC, Cox DR, Fruchart JC, Krauss RM and Rubin EM: An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science. 294:169–173. 2001. View Article : Google Scholar : PubMed/NCBI | |
Nishimura T, Nakatake Y, Konishi M and Itoh N: Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta. 1492:203–206. 2000. View Article : Google Scholar : PubMed/NCBI | |
Dushay J, Chui PC, Gopalakrishnan GS, Varela-Rey M, Crawley M, Fisher FM, Badman MK, Martinez-Chantar ML and Maratos-Flier E: Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology. 139:456–463. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chavez AO, Molina-Carrion M, Abdul-Ghani MA, Folli F, Defronzo RA and Tripathy D: Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care. 32:1542–1546. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li H, Dong K, Fang Q, Hou X, Zhou M, Bao Y, Xiang K, Xu A and Jia W: High serum level of fibroblast growth factor 21 is an independent predictor of non-alcoholic fatty liver disease: A 3-year prospective study in China. J Hepatol. 58:557–563. 2013. View Article : Google Scholar | |
Matsusue K, Kusakabe T, Noguchi T, Takiguchi S, Suzuki T, Yamano S and Gonzalez FJ: Hepatic steatosis in leptin-deficient mice is promoted by the PPARgamma target gene Fsp27. Cell Metab. 7:302–311. 2008. View Article : Google Scholar : PubMed/NCBI | |
Puri V, Konda S, Ranjit S, Aouadi M, Chawla A, Chouinard M, Chakladar A and Czech MP: Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage. J Biol Chem. 282:34213–34218. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jambunathan S, Yin J, Khan W, Tamori Y and Puri V: FSP27 promotes lipid droplet clustering and then fusion to regulate triglyceride accumulation. PLoS One. 6:e286142011. View Article : Google Scholar : PubMed/NCBI | |
Reue K: The lipin family: Mutations and metabolism. Curr Opin Lipidol. 20:165–170. 2009. View Article : Google Scholar : PubMed/NCBI | |
Song KH, Park AY, Kim JE and Ma JY: Identification and characterization of cyclic AMP response element-binding protein H response element in the human apolipoprotein A5 gene promoter. BioMed Res Int. 2013:8924912013. View Article : Google Scholar : PubMed/NCBI | |
Kim H, Mendez R, Zheng Z, Chang L, Cai J, Zhang R and Zhang K: Liver-enriched transcription factor CREBH interacts with peroxisome proliferator-activated receptor α to regulate metabolic hormone FGF21. Endocrinology. 155:769–782. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Park JG, So JS and Lee AH: Transcriptional activation of Fsp27 by the liver-enriched transcription factor CREBH promotes lipid droplet growth and hepatic steatosis. Hepatology. 61:857–869. 2015. View Article : Google Scholar | |
Hall RK and Granner DK: Insulin regulates expression of metabolic genes through divergent signaling pathways. J Basic Clin Physiol Pharmacol. 10:119–133. 1999. View Article : Google Scholar : PubMed/NCBI | |
Hanson RW and Reshef L: Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Annu Rev Biochem. 66:581–611. 1997. View Article : Google Scholar : PubMed/NCBI | |
Facchini FS, Hua NW and Stoohs RA: Effect of iron depletion in carbohydrate-intolerant patients with clinical evidence of nonalcoholic fatty liver disease. Gastroenterology. 122:931–939. 2002. View Article : Google Scholar : PubMed/NCBI | |
Fernández-Real JM, Peñarroja G, Castro A, García-Bragado F, Hernández-Aguado I and Ricart W: Blood letting in high-ferritin type 2 diabetes: Effects on insulin sensitivity and beta-cell function. Diabetes. 51:1000–1004. 2002. View Article : Google Scholar : PubMed/NCBI | |
Valenti L, Moscatiello S, Vanni E, Fracanzani AL, Bugianesi E, Fargion S and Marchesini G: Venesection for non-alcoholic fatty liver disease unresponsive to lifestyle counseling–a propensity score-adjusted observational study. QJM. 104:141–149. 2011. View Article : Google Scholar | |
Jeong WI, Osei-Hyiaman D, Park O, Liu J, Bátkai S, Mukhopadhyay P, Horiguchi N, Harvey-White J, Marsicano G, Lutz B, et al: Paracrine activation of hepatic CB1 receptors by stellate cell-derived endocannabinoids mediates alcoholic fatty liver. Cell Metab. 7:227–235. 2008. View Article : Google Scholar : PubMed/NCBI | |
Min AK, Jeong JY, Go Y, Choi YK, Kim YD, Lee IK and Park KG: cAMP response element binding protein H mediates fenofibrate-induced suppression of hepatic lipogenesis. Diabetologia. 56:412–422. 2013. View Article : Google Scholar | |
Gabay C and Kushner I: Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 340:448–454. 1999. View Article : Google Scholar : PubMed/NCBI | |
Medzhitov R and Janeway CR Jr: Decoding the patterns of self and nonself by the innate immune system. Science. 296:298–300. 2002. View Article : Google Scholar : PubMed/NCBI | |
Yoo JY and Desiderio S: Innate and acquired immunity intersect in a global view of the acute-phase response. Proc Natl Acad Sci USA. 100:1157–1162. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kaplan J, Ward DM and De Domenico I: The molecular basis of iron overload disorders and iron-linked anemias. Int J Hematol. 93:14–20. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kawano Y and Cohen DE: Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol. 48:434–441. 2013. View Article : Google Scholar : PubMed/NCBI | |
Musso G, Gambino R and Cassader M: Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog Lipid Res. 48:1–26. 2009. View Article : Google Scholar | |
Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD and Parks EJ: Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 115:1343–1351. 2005. View Article : Google Scholar : PubMed/NCBI | |
Postic C and Girard J: Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: Lessons from genetically engineered mice. J Clin Invest. 118:829–838. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tiwari S and Siddiqi SA: Intracellular trafficking and secretion of VLDL. Arterioscler Thromb Vasc Biol. 32:1079–1086. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jornayvaz FR and Shulman GI: Diacylglycerol activation of protein kinase Cε and hepatic insulin resistance. Cell Metab. 15:574–584. 2012. View Article : Google Scholar : PubMed/NCBI | |
Neuschwander-Tetri BA: Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: The central role of nontriglyceride fatty acid metabolites. Hepatology. 52:774–788. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zámbó V, Simon-Szabó L, Szelényi P, Kereszturi E, Bánhegyi G and Csala M: Lipotoxicity in the liver. World J Hepatol. 5:550–557. 2013.PubMed/NCBI | |
Gregor MF, Yang L, Fabbrini E, Mohammed BS, Eagon JC, Hotamisligil GS and Klein S: Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes. 58:693–700. 2009. View Article : Google Scholar : | |
Puri P, Mirshahi F, Cheung O, Natarajan R, Maher JW, Kellum JM and Sanyal AJ: Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology. 134:568–576. 2008. View Article : Google Scholar | |
Sharma NK, Das SK, Mondal AK, Hackney OG, Chu WS, Kern PA, Rasouli N, Spencer HJ, Yao-Borengasser A and Elbein SC: Endoplasmic reticulum stress markers are associated with obesity in nondiabetic subjects. J Clin Endocrinol Metab. 93:4532–4541. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Wei Y and Pagliassotti MJ: Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology. 147:943–951. 2006. View Article : Google Scholar | |
Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA and Bacon BR: Nonalcoholic steatohepatitis: A proposal for grading and staging the histological lesions. Am J Gastroenterol. 94:2467–2474. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A, et al Nonalcoholic Steatohepatitis Clinical Research Network: Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 41:1313–1321. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sakaguchi S, Takahashi S, Sasaki T, Kumagai T and Nagata K: Progression of alcoholic and non-alcoholic steatohepatitis: Common metabolic aspects of innate immune system and oxidative stress. Drug Metab Pharmacokinet. 26:30–46. 2011. View Article : Google Scholar | |
Shimomura I, Bashmakov Y and Horton JD: Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J Biol Chem. 274:30028–30032. 1999. View Article : Google Scholar : PubMed/NCBI | |
de Luca C and Olefsky JM: Inflammation and insulin resistance. FEBS Lett. 582:97–105. 2008. View Article : Google Scholar | |
Polyzos SA, Kountouras J and Zavos C: Nonalcoholic fatty liver disease: The pathogenetic roles of insulin resistance and adipocytokines. Curr Mol Med. 9:299–314. 2009. View Article : Google Scholar : PubMed/NCBI |