1
|
Kanzler S and Galle PR: Apoptosis and the
liver. Semin Cancer Biol. 10:173–184. 2000. View Article : Google Scholar : PubMed/NCBI
|
2
|
Halsted CH, Villanueva J, Chandler CJ,
Stabler SP, Allen RH, Muskhelishvili L, James SJ and Poirier L:
Ethanol feeding of micropigs alters methionine metabolism and
increases hepatocellular apoptosis and proliferation. Hepatology.
23:497–505. 1996. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cohen GM: Caspases: The executioners of
apoptosis. Biochem J. 326:1–16. 1997. View Article : Google Scholar : PubMed/NCBI
|
4
|
Cryns V and Yuan J: Proteases to die for.
Gene Dev. 12:1551–1570. 1998. View Article : Google Scholar : PubMed/NCBI
|
5
|
Fraser A and Evan G: A license to kill.
Cell. 85:781–784. 1996. View Article : Google Scholar : PubMed/NCBI
|
6
|
Srinivasula SM, Ahmad M, Fernandes-Alnemri
T, Litwack G and Alnemri ES: Molecular ordering of the
Fas-apoptotic pathway: The Fas/APO-1 protease Mch5 is a
CrmA-inhibitable protease that activates multiple Ced-3/ICE-like
cysteine proteases. Proc Natl Acad Sci USA. 93:14486–14491. 1996.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Farazi PA and DePinho RA: Hepatocellular
carcinoma pathogenesis: From genes to environment. Nat Rev Cancer.
6:674–687. 2006. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Johnson PJ: The epidemiology of
hepatocellular carcinoma. Eur J Gastroen Hepat. 8:845–849.
1996.
|
9
|
Curry GW and Beattie AD: Pathogenesis of
primary hepatocellular carcinoma. Eur J Gastroenterol Hepatol.
8:850–855. 1996.PubMed/NCBI
|
10
|
Huang S and He X: The role of microRNAs in
liver cancer progression. Brit J Cancer. 104:235–240. 2011.
View Article : Google Scholar :
|
11
|
Aravalli RN, Steer CJ and Cressman EN:
Molecular mechanisms of hepatocellular carcinoma. Hepatology.
48:2047–2063. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kota J, Chivukula RR, O'Donnell KA,
Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P,
Torbenson M, Clark KR, et al: Therapeutic microRNA delivery
suppresses tumorigenesis in a murine liver cancer model. Cell.
137:1005–1017. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Gramantieri L, Ferracin M, Fornari F,
Veronese A, Sabbioni S, Liu CG, Calin GA, Giovannini C, Ferrazzi E,
Grazi GL, et al: Cyclin G1 is a target of miR-122a, a microRNA
frequently down-regulated in human hepatocellular carcinoma. Cancer
Res. 67:6092–6099. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Furuta M, Kozaki KI, Tanaka S, Arii S,
Imoto I and Inazawa J: miR-124 and miR-203 are epigenetically
silenced tumor-suppressive microRNAs in hepatocellular carcinoma.
Carcinogenesis. 31:766–776. 2010. View Article : Google Scholar
|
15
|
Lan FF, Wang H, Chen YC, Chan CY, Ng SS,
Li K, Xie D, He ML, Lin MC and Kung HF: Hsa-let-7g inhibits
proliferation of hepatocellular carcinoma cells by downregulation
of c-Myc and upregulation of p16(INK4A). Int J Cancer. 128:319–331.
2011. View Article : Google Scholar
|
16
|
Pirozzi G, McConnell SJ, Uveges AJ, Carter
JM, Sparks AB, Kay BK and Fowlkes DM: Identification of novel human
WW domain-containing proteins by cloning of ligand targets. J Biol
Chem. 272:14611–14616. 1997. View Article : Google Scholar : PubMed/NCBI
|
17
|
Maddika S, Kavela S, Rani N, Palicharla
VR, Pokorny JL, Sarkaria JN and Chen J: WWP2 is an E3 ubiquitin
ligase for PTEN. Nat Cell Biol. 13:728–733. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Soond S and Chantry A: Selective targeting
of activating and inhibitory Smads by distinct WWP2 ubiquitin
ligase isoforms differentially modulates TGFβ signalling and EMT.
Oncogene. 30:2451–2462. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Payton JE, Grieselhuber NR, Chang LW,
Murakami M, Geiss GK, Link DC, Nagarajan R, Watson MA and Ley TJ:
High throughput digital quantification of mRNA abundance in primary
human acute myeloid leukemia samples. J Clin Invest. 119:1714–1726.
2009. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Sun M, Xia R, Jin F, Xu T, Liu Z, De W and
Liu X: Downregulated long noncoding RNA MEG3 is associated with
poor prognosis and promotes cell proliferation in gastric cancer.
Tumour Biol. 35:1065–1073. 2014. View Article : Google Scholar
|
21
|
Morita Y, Naka T, Kawazoe Y, Fujimoto M,
Narazaki M, Nakagawa R, Fukuyama H, Nagata S and Kishimoto T:
Signals transducers and activators of transcription (STAT)-induced
STAT inhibitor-1 (SSI-1)/suppressor of cytokine signaling-1
(SOCS-1) suppresses tumor necrosis factor α-induced cell death in
fibroblasts. Proc Natl Acad Sci USA. 97:5405–5410. 2000. View Article : Google Scholar
|
22
|
Wang YY, Zhou GB, Yin T, Chen B, Shi JY,
Liang WX, Jin XL, You JH, Yang G, Shen ZX, et al: AML1-ETO and
C-KIT mutation/overexpression in t(8; 21) leukemia: Implication in
stepwise leukemogenesis and response to Gleevec. Proc Natl Acad Sci
USA. 102:1104–1109. 2005. View Article : Google Scholar
|
23
|
Subik K, Shu L, Wu C, Liang Q, Hicks D,
Boyce B, Schiffhauer L, Chen D, Chen C, Tang P and Xing L: The
ubiquitin E3 ligase WWP1 decreases CXCL12-mediated MDA231 breast
cancer cell migration and bone metastasis. Bone. 50:813–823. 2012.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Hopkins BD, Hodakoski C, Barrows D, Mense
SM and Parsons RE: PTEN function: The long and the short of it.
Trends Biochem Sci. 39:183–190. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ma S and Kosorok MR: Detection of gene
pathways with predictive power for breast cancer prognosis. BMC
Bioinformatics. 11:12010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Xu J, Lamouille S and Derynck R:
TGF-beta-induced epithelial to mesenchymal transition. Cell Res.
19:156–172. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Heldin CH, Landström M and Moustakas A:
Mechanism of TGF-beta signaling to growth arrest, apoptosis and
epithelial-mesenchymal transition. Curr Opin Cell Biol. 21:166–176.
2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cory S, Huang DC and Adams JM: The Bcl-2
family: Roles in cell survival and oncogenesis. Oncogene.
22:8590–8607. 2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Huang SM, Bock JM and Harari PM: Epiderm
al growth factor receptor blockade with C225 modulates
proliferation, apoptosis and radiosensitivity in squamous cell
carcinomas of the head and neck. Cancer Res. 59:1935–1940.
1999.PubMed/NCBI
|
30
|
Fukamachi Y, Karasaki Y, Sugiura T, Itoh
H, Abe T, Yamamura K and Higashi K: Zinc suppresses apoptosis of
U937 cells induced by hydrogen peroxide through an increase of the
Bcl-2/Bax ratio. Biochem Biophys Res Commun. 246:364–369. 1998.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Xiang J, Chao DT and Korsmeyer SJ:
BAX-induced cell death may not require interleukin 1
beta-converting enzyme-like proteases. Proc Natl Acad Sci USA.
93:14559–14563. 1996. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sakinah SA, Handayani ST and Hawariah LP:
Zerumbone induced apoptosis in liver cancer cells via modulation of
Bax/Bcl-2 ratio. Cancer Cell Int. 7:1–11. 2007.
|