1
|
Zoungas S, McGrath BP, Branley P, Kerr PG,
Muske C, Wolfe R, Atkins RC, Nicholls K, Fraenkel M, Hutchison BG,
et al: Cardiovascular morbidity and mortality in the
Atherosclerosis and Folic Acid Supplementation Trial (ASFAST) in
chronic renal failure: A multicenter, randomized, controlled trial.
J Am Coll Cardiol. 47:1108–1116. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yoshida H and Kisugi R: Mechanisms of LDL
oxidation. Clin Chim Acta. 411:1875–1882. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Chisolm GM III, Hazen SL, Fox PL and
Cathcart MK: The oxidation of lipoproteins by
monocytes-macrophages. Biochemical and biological mechanisms. J
Biol Chem. 274:25959–25962. 1999. View Article : Google Scholar : PubMed/NCBI
|
4
|
Müller K, Carpenter KL and Mitchinson MJ:
Cell-mediated oxidation of LDL: Comparison of different cell types
of the atherosclerotic lesion. Free Radic Res. 29:207–220. 1998.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Chen K, Thomas SR and Keaney JF Jr: Beyond
LDL oxidation: ROS in vascular signal transduction. Free Radic Biol
Med. 35:117–132. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sparrow CP, Parthasarathy S and Steinberg
D: Enzymatic modification of low density lipoprotein by purified
lipoxygenase plus phospholipase A2 mimics cell-mediated oxidative
modification. J Lipid Res. 29:745–753. 1988.PubMed/NCBI
|
7
|
Malle E, Waeg G, Schreiber R, Gröne EF,
Sattler W and Grone HJ: Immunohistochemical evidence for the
myeloperoxidase/H2O2/halide system in human
atherosclerotic lesions: Colocalization of myeloperoxidase and
hypochlorite-modified proteins. Eur J Biochem. 267:4495–4503. 2000.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Sokolov AV, Chekanov AV, Kostevich VA,
Aksenov DV, Vasilyev VB and Panasenko OM: Revealing binding sites
for myeloperoxidase on the surface of human low density
lipoproteins. Chem Phys Lipids. 164:49–53. 2011. View Article : Google Scholar
|
9
|
Carr AC, Myzak MC, Stocker R, McCall MR
and Frei B: Myeloperoxidase binds to low-density lipoprotein:
Potential implications for atherosclerosis. FEBS Lett. 487:176–180.
2000. View Article : Google Scholar
|
10
|
Sokolov AV, Ageeva KV, Cherkalina OS,
Pulina MO, Zakharova ET, Prozorovskii VN, Aksenov DV, Vasilyev VB
and Panasenko OM: Identification and properties of complexes formed
by myeloperoxidase with lipoproteins and ceruloplasmin. Chem Phys
Lipids. 163:347–355. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Leake DS and Rankin SM: The oxidative
modification of low-density lipoproteins by macrophages. Biochem J.
270:741–748. 1990. View Article : Google Scholar : PubMed/NCBI
|
12
|
Heiple JM, Wright SD, Allen NS and
Silverstein SC: Macrophages form circular zones of very close
apposition to IgG-coated surfaces. Cell Motil Cytoskeleton.
15:260–270. 1990. View Article : Google Scholar : PubMed/NCBI
|
13
|
Simons K and Ikonen E: Functional rafts in
cell membranes. Nature. 387:569–572. 1997. View Article : Google Scholar : PubMed/NCBI
|
14
|
Rentero C, Zech T, Quinn CM, Engelhardt K,
Williamson D, Grewal T, Jessup W, Harder T and Gaus K: Functional
implications of plasma membrane condensation for T cell activation.
PLoS One. 3:e22622008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gaus K, Kritharides L, Schmitz G,
Boettcher A, Drobnik W, Langmann T, Quinn CM, Death A, Dean RT and
Jessup W: Apolipoprotein A-1 interaction with plasma membrane lipid
rafts controls cholesterol export from macrophages. FASED J.
18:574–576. 2004.
|
16
|
Lemaire-Ewing S, Prunet C, Montange T,
Vejux A, Berthier A, Bessède G, Corcos L, Gambert P, Néel D and
Lizard G: Comparison of the cytotoxic, pro-oxidant and
pro-inflammatory characteristics of different oxysterols. Cell Biol
Toxicol. 21:97–114. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Brown DA and London E: Structure and
function of sphingolipid- and cholesterol-rich membrane rafts. J
Biol Chem. 275:17221–17224. 2000. View Article : Google Scholar : PubMed/NCBI
|
18
|
Islam AS, Beidelschies MA, Huml A and
Greenfield EM: Titanium particles activate toll-like receptor 4
independently of lipid rafts in RAW264.7 murine macrophages. J
Orthop Res. 29:211–217. 2011. View Article : Google Scholar
|
19
|
Kiyanagi T, Iwabuchi K, Shimada K, Hirose
K, Miyazaki T, Sumiyoshi K, Iwahara C, Nakayama H, Masuda H, Mokuno
H, et al: Involvement of cholesterol-enriched microdomains in class
A scavenger receptor-mediated responses in human macrophages.
Atherosclerosis. 215:60–69. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li Q and Cathcart MK: Selective inhibition
of cytosolic phospholipase A2 in activated human monocytes.
Regulation of superoxide anion production and low density
lipoprotein oxidation. J Biol Chem. 272:2404–2411. 1997. View Article : Google Scholar : PubMed/NCBI
|
21
|
Jin S, Zhang Y, Yi F and Li PL: Critical
role of lipid raft redox signaling platforms in endostatin-induced
coronary endothelial dysfunction. Arterioscler Thromb Vasc Biol.
28:485–490. 2008. View Article : Google Scholar
|
22
|
Macdonald JL and Pike LJ: A simplified
method for the preparation of detergent-free lipid rafts. J Lipid
Res. 46:1061–1067. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Dammer EB, Fallini C, Gozal YM, Duong DM,
Rossoll W, Xu P, Lah JJ, Levey AI, Peng J, Bassell GJ and Seyfried
NT: Coaggregation of RNA-binding proteins in a model of TDP-43
proteinopathy with selective RGG motif methylation and a role for
RRM1 ubiquitination. PLoS One. 7:e386582012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Seyfried NT, Gozal YM, Donovan LE,
Herskowitz JH, Dammer EB, Xia Q, Ku L, Chang J, Duong DM, Rees HD,
et al: Quantitative analysis of the detergent-insoluble brain
proteome in frontotemporal lobar degeneration using SILAC internal
standards. J Proteome Res. 11:2721–2738. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Herskowitz JH, Gozal YM, Duong DM, Dammer
EB, Gearing M, Ye K, Lah JJ, Peng J, Levey AI and Seyfried NT:
Asparaginyl endopeptidase cleaves TDP-43 in brain. Proteomics.
12:2455–2463. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Xu P, Duong DM and Peng J: Systematical
optimization of reverse-phase chromatography for shotgun
proteomics. J Proteome Res. 8:3944–3950. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Elias JE and Gygi SP: Target-decoy search
strategy for increased confidence in large-scale protein
identifications by mass spectrometry. Nat Methods. 4:207–214. 2007.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Seyfried NT, Gozal YM, Donovan LE,
Herskowitz JH, Dammer EB, Xia Q, Ku L, Chang J, Duong DM, Rees HD,
et al: Quantitative analysis of the detergent-insoluble brain
proteome in frontotemporal lobar degeneration using silac internal
standards. J Proteome Res. 11:2721–2738. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Gozal YM, Duong DM, Gearing M, Cheng D,
Hanfelt JJ, Funderburk C, Peng J, Lah JJ and Levey AI: Proteomics
analysis reveals novel components in the detergent-insoluble
subproteome in Alzheimer's disease. J Proteome Res. 8:5069–5079.
2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wei YM, Li X, Xiong J, Abais JM, Xia M,
Boini KM, Zhang Y and Li PL: Attenuation by statins of membrane
raft-redox signaling in coronary arterial endothelium. J Pharmacol
Exp Ther. 345:170–179. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gajate C and Mollinedo F: The antitumor
ether lipid ET-18-OCH3 induces apoptosis through translocation and
capping of Fas/CD95 into membrane rafts in human leukemic cells.
Blood. 98:3860–3863. 2001. View Article : Google Scholar : PubMed/NCBI
|
32
|
Smart EJ, Ying YS, Mineo C and Anderson
RG: A detergent-free method for purifying caveolae membrane from
tissue culture cells. Proc Natl Acad Sci USA. 92:10104–10108. 1995.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Stocker R and Keaney JF Jr: Role of
oxidative modifications in atherosclerosis. Physiol Rev.
84:1381–1478. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Itabe H: Oxidative modification of LDL:
Its pathological role in atherosclerosis. Clin Rev Allergy Immunol.
37:4–11. 2009. View Article : Google Scholar
|
35
|
Delporte C, Van Antwerpen P, Vanhamme L,
Roumeguère T and Zouaoui Boudjeltia K: Low-density lipoprotein
modified by myeloperoxidase in inflammatory pathways and clinical
studies. Mediators Inflamm. 2013:9715792013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Du F, Ping LY, He CY, Yu H, Cao J and Wu
JZ: Involvement of HNP-1 in different oxidation mechanisms in human
endothelial cells. Eur J Lipid Sci Technol. 113:430–435. 2011.
View Article : Google Scholar
|
37
|
Klebanoff SJ, Kettle AJ, Rosen H,
Winterbourn CC and Nauseef WM: Myeloperoxidase: A front-line
defender against phagocytosed microorganisms. J Leukoc Biol.
93:185–198. 2013. View Article : Google Scholar :
|
38
|
Daugherty A, Dunn JL, Rateri DL and
Heinecke JW: Myeloperoxidase, a catalyst for lipoprotein oxidation,
is expressed in human atherosclerotic lesions. J Clin Invest.
94:437–444. 1994. View Article : Google Scholar : PubMed/NCBI
|
39
|
Carr AC, Myzak MC, Stocker R, McCall MR
and Frei B: Myeloperoxidase binds to low-density lipoprotein:
Potential implications for atherosclerosis. FEBS Lett. 487:176–180.
2000. View Article : Google Scholar
|
40
|
Zhang D and Richardson DR: Endoplasmic
reticulum protein 29 (ERp29): An emerging role in cancer. Int J
Biochem Cell Biol. 43:33–36. 2011. View Article : Google Scholar
|
41
|
Barak NN, Neumann P, Sevvana M,
Schutkowski M, Naumann K, Malesević M, Reichardt H, Fischer G,
Stubbs MT and Ferrari DM: Crystal structure and functional analysis
of the protein disulfide isomerase-related protein ERp29. J Mol
Biol. 385:1630–1642. 2009. View Article : Google Scholar
|
42
|
Suaud L, Miller K, Alvey L, Yan W, Robay
A, Kebler C, Kreindler JL, Guttentag S, Hubbard MJ and Rubenstein
RC: ERp29 regulates DeltaF508 and wild-type cystic fibrosis
transmembrane conductance regulator (CFTR) trafficking to the
plasma membrane in cystic fibrosis (CF) and non-CF epithelial
cells. J Biol Chem. 286:21239–21253. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hansson M, Olsson I and Nauseef WM:
Biosynthesis, processing, and sorting of human myeloperoxidase.
Arch Biochem Biophys. 445:214–224. 2006. View Article : Google Scholar
|