1
|
Nattel S, Burstein B and Dobrev D: Atrial
remodeling and atrial fibrillation: Mechanisms and implications.
Circ Arrhythm Electrophysiol. 1:62–73. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Allessie M, Ausma J and Schotten U:
Electrical, contractile and structural remodeling during atrial
fibrillation. Cardiovasc Res. 54:230–246. 2002. View Article : Google Scholar : PubMed/NCBI
|
3
|
Krogh-Madsen T, Abbott GW and Christini
DJ: Effects of electrical and structural remodeling on atrial
fibrillation maintenance: A simulation study. PLoS Comput Biol.
8:e10023902012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bosch RF, Scherer CR, Rüb N, Wöhrl S,
Steinmeyer K, Haase H, Busch AE, Seipel L and Kühlkamp V: Molecular
mechanisms of early electrical remodeling: Transcriptional
downregulation of ion channel subunits reduces I(Ca,L) and I(to) in
rapid atrial pacing in rabbits. J Am Coll Cardiol. 41:858–869.
2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cutler MJ, Jeyaraj D and Rosenbaum DS:
Cardiac electrical remodeling in health and disease. Trends
Pharmacol Sci. 32:174–180. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhao Z, Xie Y, Wen H, Xiao D, Allen C,
Fefelova N, Dun W, Boyden PA, Qu Z and Xie LH: Role of the
transient outward potassium current in the genesis of early
afterdepolarizations in cardiac cells. Cardiovasc Res. 95:308–316.
2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Voigt N, Li N, Wang Q, Wang W, Trafford
AW, Abu-Taha I, Sun Q, Wieland T, Ravens U, Nattel S, et al:
Enhanced sarcoplasmic reticulum Ca2+ leak and increased
Na+–Ca2+ exchanger function underlie delayed
afterdepolarizations in patients with chronic atrial fibrillation.
Circulation. 125:2059–2070. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kho C, Lee A and Hajjar RJ: Altered
sarcoplasmic reticulum calcium cycling - targets for heart failure
therapy. Nat Rev Cardiol. 9:717–733. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Parekh AB: Slow feedback inhibition of
calcium release-activated calcium current by calcium entry. J Biol
Chem. 273:14925–14932. 1998. View Article : Google Scholar : PubMed/NCBI
|
10
|
Millon-Frémillon A, Brunner M, Abed N,
Collomb E, Ribba AS, Block MR, Albigès-Rizo C and Bouvard D:
Calcium and calmodulin-dependent serine/threonine protein kinase
type II (CaMKII)-mediated intramolecular opening of integrin
cytoplasmic domain-associated protein-1 (ICAP-1α) negatively
regulates β1 integrins. J Biol Chem. 288:20248–20260. 2013.
View Article : Google Scholar
|
11
|
Wurzinger B, Mair A, Pfister B and Teige
M: Cross-talk of calcium-dependent protein kinase and MAP kinase
signaling. Plant Signal Behav. 6:8–12. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Goette A, Staack T, Röcken C, Arndt M,
Geller JC, Huth C, Ansorge S, Klein HU and Lendeckel U: Increased
expression of extracellular signal-regulated kinase and
angiotensin-converting enzyme in human atria during atrial
fibrillation. J Am Coll Cardiol. 35:1669–1677. 2000. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rajadhyaksha A, Husson I, Satpute SS,
Küppenbender KD, Ren JQ, Guerriero RM, Standaert DG and Kosofsky
BE: L-type Ca2+ channels mediate adaptation of
extracellular signal-regulated kinase 1/2 phosphorylation in the
ventral tegmental area after chronic amphetamine treatment. J
Neurosci. 24:7464–7476. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Goette A, Honeycutt C and Langberg JJ:
Electrical remodeling in atrial fibrillation. Time course and
mechanisms Circulation. 94:2968–2974. 1996.
|
15
|
Catterall WA: Excitation-contraction
coupling in vertebrate skeletal muscle: A tale of two calcium
channels. Cell. 64:871–874. 1991. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wehrens XH, Lehnart SE and Marks AR:
Intracellular calcium release and cardiac disease. Annu Rev
Physiol. 67:69–98. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
George AL Jr: Molecular and genetic basis
of sudden cardiac death. J Clin Invest. 123:75–83. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Priori SG and Chen SR: Inherited
dysfunction of sarcoplasmic reticulum Ca2+ handling and
arrhythmogenesis. Circ Res. 108:871–883. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hagenston AM and Bading H: Calcium
signaling in synapse-to-nucleus communication. Cold Spring Harb
Perspect Biol. 3:a0045642011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Cargnello M and Roux PP: Activation and
function of the MAPKs and their substrates, the MAPK-activated
protein kinases. Microbiol Mol Biol Rev. 75:50–83. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Runchel C, Matsuzawa A and Ichijo H:
Mitogenactivated protein kinases in mammalian oxidative stress
responses. Antioxid Redox Signal. 15:205–218. 2011. View Article : Google Scholar
|
22
|
Kolch W: Coordinating ERK/MAPK signalling
through scaffolds and inhibitors. Nat Rev Mol Cell Biol. 6:827–837.
2005. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Yogi A, Callera GE, Montezano AC, Aranha
AB, Tostes RC, Schiffrin EL and Touyz RM: Endothelin-1, but not Ang
II, activates MAP kinases through c-Src independent Ras-Raf
dependent pathways in vascular smooth muscle cells. Arterioscler
Thromb Vasc Biol. 27:1960–1967. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Rosette C and Karin M: Ultraviolet light
and osmotic stress: Activation of the JNK cascade through multiple
growth factor and cytokine receptors. Science. 274:1194–1197. 1996.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Laderoute KR and Webster KA:
Hypoxia/reoxygenation stimulates Jun kinase activity through redox
signaling in cardiac myocytes. Circ Res. 80:336–344. 1997.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Takano H, Zou Y, Hasegawa H, Akazawa H,
Nagai T and Komuro I: Oxidative stress-induced signal transduction
pathways in cardiac myocytes: Involvement of ROS in heart diseases.
Antioxid Redox Signal. 5:789–794. 2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Nakashima T, Ohkusa T, Okamoto Y, Yoshida
M, Lee JK, Mizukami Y and Yano M: Rapid electrical stimulation
causes alterations in cardiac intercellular junction proteins of
cardiomyocytes. Am J Physiol Heart Circ Physiol. 306:H1324–H1333.
2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Li Z, Carter JD, Dailey LA and Huang YC:
Pollutant particles produce vasoconstriction and enhance MAPK
signaling via angiotensin type I receptor. Environ Health Perspect.
113:1009–1014. 2005. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Plotnikov A, Zehorai E, Procaccia S and
Seger R: The MAPK cascades: Signaling components, nuclear roles and
mechanisms of nuclear translocation. Biochim Biophys Acta.
1813:1619–1633. 2011. View Article : Google Scholar
|
30
|
Karin M: The regulation of AP-1 activity
by mitogen-activated protein kinases. J Biol Chem. 270:16483–16486.
1995. View Article : Google Scholar : PubMed/NCBI
|
31
|
Roux PP and Blenis J: ERK and p38
MAPK-activated protein kinases: A family of protein kinases with
diverse biological functions. Microbiol Mol Biol Rev. 68:320–344.
2004. View Article : Google Scholar : PubMed/NCBI
|