1
|
Arriagada PV, Growdon JH, Hedley-Whyte ET
and Hyman BT: Neurofibrillary tangles but not senile plaques
parallel duration and severity of Alzheimer's disease. Neurology.
42:6311992. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bateman RJ, Xiong C, Benzinger TL, Fagan
AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, et al:
Dominantly Inherited Alzheimer Network: Clinical and biomarker
changes in dominantly inherited Alzheimer's disease. N Engl J Med.
367:795–804. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Weiner MW, Veitch DP, Aisen PS, et al:
Alzheimer's Disease Neuroimaging Initiative: The Alzheimer's
Disease Neuroimaging Initiative: A review of papers published since
its inception. Alzheimers Dement. 8(Suppl 1): S1–S68. 2012.
View Article : Google Scholar :
|
4
|
Mishima K, Okawa M, Hozumi S and Hishikawa
Y: Supplementary administration of artificial bright light and
melatonin as potent treatment for disorganized circadian
rest-activity and dysfunctional autonomic and neuroendocrine
systems in institutionalized demented elderly persons. Chronobiol
Int. 17:419–432. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hatfield CF, Herbert J, van Someren EJW,
Hodges JR and Hastings MH: Disrupted daily activity/rest cycles in
relation to daily cortisol rhythms of home-dwelling patients with
early Alzheimer's dementia. Brain. 127:1061–1074. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Tranah GJ, Blackwell T, Stone KL, et al:
SOF Research Group: Circadian activity rhythms and risk of incident
dementia and mild cognitive impairment in older women. Ann Neurol.
70:722–732. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sherman SM, Mumford JA and Schnyer DM:
Hippocampal activity mediates the relationship between circadian
activity rhythms and memory in older adults. Neuropsychologia.
75:617–625. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yoneda S, Hara H, Hirata A, Fukushima M,
Inomata Y and Tanihara H: Vitreous fluid levels of β-amyloid (1–42)
and tau in patients with retinal diseases. Jap J Ophthalmol.
106–108. 2005. View Article : Google Scholar
|
9
|
Ning A, Cui J, To E, Ashe KH and Matsubara
J: Amyloid-β deposits lead to retinal degeneration in a mouse model
of Alzheimer disease. Invest Ophthalmol Vis Sci. 49:5136–5143.
2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Cotman SL, Halfter W and Cole GJ: Agrin
binds to β-amyloid (Aβ), accelerates Aβ fibril formation, and is
localized to Aβ deposits in Alzheimer's disease brain. Mol Cell
Neurosci. 15:183–198. 2000. View Article : Google Scholar : PubMed/NCBI
|
11
|
Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV,
Miller CA, Ko MK, Black KL, Schwartz M and Farkas DL:
Identification of amyloid plaques in retinas from Alzheimer's
patients and noninvasive in vivo optical imaging of retinal plaques
in a mouse model. Neuroimage. 54(Suppl 1): S204–S217. 2011.
View Article : Google Scholar
|
12
|
LeGates TA, Altimus CM, Yang S, Kirkwood
A, Weber ET and Hattar S: Melanopsin-expressing retinal ganglion
cells mediate light modulation of cognitive functions and mood
related behaviors. Invest Ophthalmol Vis Sci. 52:34652011.
|
13
|
Sosa-Ortiz AL, Acosta-Castillo I and
Prince MJ: Epidemiology of dementias and Alzheimer's disease. Arch
Med Res. 43:600–608. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lopez AD, Mathers CD, Ezzati M, Jamison DT
and Murray CJ: Global and regional burden of disease and risk
factors, 2001: systematic analysis of population health data.
Lancet. 367:1747–1757. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Karran E, Mercken M and De Strooper B: The
amyloid cascade hypothesis for Alzheimer's disease: An appraisal
for the development of therapeutics. Nat Rev Drug Discov.
10:698–712. 2011. View
Article : Google Scholar : PubMed/NCBI
|
16
|
De Strooper B, Vassar R and Golde T: The
secretases:enzymes with therapeutic potential in Alzheimer disease.
Nat Rev Neurol. 6:99–107. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
de Calignon A, Polydoro M, Suárez-Calvet
M, William C, Adamowicz DH, Kopeikina KJ, Pitstick R, Sahara N,
Ashe KH, Carlson GA, et al: Propagation of tau pathology in a model
of early Alzheimer's disease. Neuron. 73:685–697. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Bancher C, Brunner C, Lassmann H, Budka H,
Jellinger K, Wiche G, Seitelberger F, Grundke-Iqbal I, Iqbal K and
Wisniewski HM: Accumulation of abnormally phosphorylated τ precedes
the formation of neurofibrillary tangles in Alzheimer's disease.
Brain Res. 477:90–99. 1989. View Article : Google Scholar : PubMed/NCBI
|
19
|
LeGates TA, Altimus CM, Wang H, Lee HK,
Yang S, Zhao H, Kirkwood A, Weber ET and Hattar S: Aberrant light
directly impairs mood and learning through melanopsin-expressing
neurons. Nature. 491:594–598. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Cui Q, Ren C, Sollars PJ, Pickard GE and
So KF: The injury resistant ability of melanopsin-expressing
intrinsically photosensitive retinal ganglion cells. Neuroscience.
284:845–853. 2015. View Article : Google Scholar :
|
21
|
González Fleitas MF, Bordone M, Rosenstein
RE and Dorfman D: Effect of retinal ischemia on the non-image
forming visual system. Chronobiol Int. 32:152–163. 2015. View Article : Google Scholar
|
22
|
Czeisler CA, Shanahan TL, Klerman EB,
Martens H, Brotman DJ, Emens JS, Klein T and Rizzo JF: Suppression
of melatonin secretion in some blind patients by exposure to bright
light. N Engl J Med. 332:6–11. 1995. View Article : Google Scholar : PubMed/NCBI
|
23
|
Moura AL, Nagy BV, La Morgia C, Barboni P,
Oliveira AG, Salomão SR, Berezovsky A, de Moraes-Filho MN, Chicani
CF, Belfort R Jr, et al: The pupil light reflex in Leber's
hereditary optic neuropathy: Evidence for preservation of
melanopsin-expressing retinal ganglion cells. Invest Ophthalmol Vis
Sci. 54:4471–4477. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
de Zavalía N, Plano SA, Fernandez DC,
Lanzani MF, Salido E, Belforte N, Sarmiento MI, Golombek DA and
Rosenstein RE: Effect of experimental glaucoma on the non-image
forming visual system. J Neurochem. 117:904–914. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Noseda R, Kainz V, Jakubowski M, Gooley
JJ, Saper CB, Digre K and Burstein R: A neural mechanism for
exacerbation of headache by light. Nat Neurosci. 13:239–245. 2010.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Ross-Cisneros F, La Morgia C, Pan B,
Hannibal J, Carelli V and Sadun A: A Histopathologic and
morphometric analysis of degenerating melanopsin retinal ganglion
cells in Alzheimer's disease. Invest Ophthalmol Vis Sci.
54:2992013.
|
27
|
van Someren EJ, Hagebeuk EE, Lijzenga C,
Scheltens P, de Rooij SE, Jonker C, Pot AM, Mirmiran M and Swaab
DF: Circadian rest-activity rhythm disturbances in Alzheimer's
disease. Biol Psychiatry. 40:259–270. 1996. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hofman MA and Swaab DF: Living by the
clock: the circadian pacemaker in older people. Ageing Res Rev.
5:33–51. 2006. View Article : Google Scholar
|
29
|
La Morgia C, Gallassi R, Sambati L,
Provini F, Ross-Cisneros FN, Pan B, Barboni P, et al: Melanopsin
retinal ganglion cells and circadian dysfunction in Alzheimer's
disease. Acta Ophthalmologica. 91:02013. View Article : Google Scholar
|
30
|
La Morgia C, Ross-Cisneros FN, Koronyo Y,
Hannibal J, Gallassi R, Cantalupo G, Sambati L, Pan BX, Tozer KR,
Barboni P, et al: Melanopsin retinal ganglion cell loss in
Alzheimer's disease. Ann Neurol. Oct 27–2015.Epub ahead of
print.
|
31
|
Dai J, Swaab DF, Van der Vliet J and Buijs
RM: Postmortem tracing reveals the organization of hypothalamic
projections of the suprachiasmatic nucleus in the human brain. J
Comp Neurol. 400:87–102. 1998. View Article : Google Scholar : PubMed/NCBI
|