1
|
Huang GT, Sonoyama W, Liu Y, Liu H, Wang S
and Shi S: The hidden treasure in apical papilla: The potential
role in pulp/dentin regeneration and bioroot engineering. J Endod.
34:645–651. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Sonoyama W, Liu Y, Fang D, Yamaza T, Seo
BM, Zhang C, Liu H, Gronthos S, Wang CY, Wang S and Shi S:
Mesenchymal stem cell-mediated functional tooth regeneration in
swine. PloS One. 1:e792006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Huang GT, Gronthos S and Shi S:
Mesenchymal stem cells derived from dental tissues vs. those from
other sources: Their biology and role in regenerative medicine. J
Dent Res. 88:792–806. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bakopoulou A, Leyhausen G, Volk J,
Tsiftsoglou A, Garefis P, Koidis P and Geurtsen W: Comparative
analysis of in vitro osteo/odontogenic differentiation potential of
human dental pulp stem cells (DPSCs) and stem cells from the apical
papilla (SCAP). Arch Oral Biol. 56:709–721. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Tziafas D and Kodonas K: Differentiation
potential of dental papilla, dental pulp and apical papilla
progenitor cells. J Endod. 36:781–789. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lin CS, Xin ZC, Dai J and Lue TF: Commonly
used mesenchymal stem cell markers and tracking labels: Limitations
and challenges. Histol Histopathol. 28:1109–1116. 2013.PubMed/NCBI
|
7
|
Bakopoulou A, Leyhausen G, Volk J, Koidis
P and Geurtsen W: Comparative characterization of STRO-1
(neg)/CD146 (pos) and STRO-1 (pos)/CD146 (pos) apical papilla stem
cells enriched with flow cytometry. Arch Oral Biol. 58:1556–1568.
2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Friedlander LT, Cullinan MP and Love RM:
Dental stem cells and their potential role in apexogenesis and
apexification. Int Endod J. 42:955–962. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang J, Zhang H, Zhang W, Huang E, Wang N,
Wu N, Wen S, Chen X, Liao Z, Deng F, et al: Bone morphogenetic
protein-9 effectively induces osteo/odontoblastic differentiation
of the reversibly immortalized stem cells of dental apical papilla.
Stem Cells Dev. 23:1405–1416. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lin ZM, Qin W, Zhang NH, Xiao L and Ling
JQ: Adenovirus-mediated recombinant human bone morphogenetic
protein-7 expression promotes differentiation of human dental pulp
cells. J Endod. 33:930–935. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang W, Zhang X, Ling J, Liu W, Ma J and
Zheng J: Proliferation and odontogenic differentiation of BMP2
genetransfected stem cells from human tooth apical papilla: An in
vitro study. Int J Mol Med. 34:1004–1012. 2014.PubMed/NCBI
|
12
|
Yang X, van der Kraan PM, Bian Z, Fan M,
Walboomers XF and Jansen JA: Mineralized tissue formation by
BMP2-transfected pulp stem cells. J Dent Res. 88:1020–1025. 2009.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Hiltunen MO, Ruuskanen M, Huuskonen J,
Mähönen AJ, Ahonen M, Rutanen J, Kosma VM, Mahonen A, Kröger H and
Ylä-Herttuala S: Adenovirus-mediated VEGF-A gene transfer induces
bone formation in vivo. FASEB J. 17:1147–1149. 2003.PubMed/NCBI
|
14
|
Jacobsen KA, Al-Aql ZS, Wan C, Fitch JL,
Stapleton SN, Mason ZD, Cole RM, Gilbert SR, Clemens TL, Morgan EF,
et al: Bone formation during distraction osteogenesis is dependent
on both VEGFR1 and VEGFR2 signaling. J Bone Miner Res. 23:596–609.
2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Dvorak HF: Angiogenesis: Update 2005. J
Thromb Haemost. 3:1835–1842. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang W, Liu W, Ling J, Lin Z, Gao Y, Mao
X and Jian Y: Odontogenic differentiation of vascular endothelial
growth factor-transfected human dental pulp stem cells in vitro.
Mol Med Rep. 10:1899–1906. 2014.PubMed/NCBI
|
17
|
Lee JH, Um S, Jang JH and Seo BM: Effects
of VEGF and FGF-2 on proliferation and differentiation of human
periodontal ligament stem cells. Cell Tissue Res. 348:475–484.
2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Matsushita K, Motani R, Sakuta T,
Yamaguchi N, Koga T, Matsuo K, Nagaoka S, Abeyama K, Maruyama I and
Torii M: The role of vascular endothelial growth factor in human
dental pulp cells: Induction of chemotaxis, proliferation and
differentiation and activation of the AP-1-dependent signaling
pathway. J Dent Res. 79:1596–1603. 2000. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kanczler JM, Ginty PJ, White L, Clarke NM,
Howdle SM, Shakesheff KM and Oreffo RO: The effect of the delivery
of vascular endothelial growth factor and bone morphogenic
protein-2 to osteoprogenitor cell populations on bone formation.
Biomaterials. 31:1242–1250. 2010. View Article : Google Scholar
|
20
|
Kumar S, Wan C, Ramaswamy G, Clemens TL
and Ponnazhagan S: Mesenchymal stem cells expressing osteogenic and
angiogenic factors synergistically enhance bone formation in a
mouse model of segmental bone defect. Mol Ther. 18:1026–1034. 2010.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Lin CY, Chang YH, Lin KJ, Yen TC, Tai CL,
Chen CY, Lo WH, Hsiao IT and Hu YC: The healing of critical-sized
femoral segmental bone defects in rabbits using
baculovirus-engineered mesenchymal stem cells. Biomaterials.
31:3222–3230. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lin Z, Wang JS, Lin L, Zhang J, Liu Y,
Shuai M and Li Q: Effects of BMP2 and VEGF165 on the osteogenic
differentiation of rat bone marrow-derived mesenchymal stem cells.
Exp Ther Med. 7:625–629. 2014.PubMed/NCBI
|
23
|
Schönmeyr BH, Soares M, Avraham T, Clavin
NW, Gewalli F and Mehrara BJ: Vascular endothelial growth factor
inhibits bone morphogenetic protein 2 expression in rat mesenchymal
stem cells. Tissue Eng Part A. 16:653–662. 2010. View Article : Google Scholar :
|
24
|
Chen K, Xiong H, Huang Y and Liu C:
Comparative analysis of in vitro periodontal characteristics of
stem cells from apical papilla (SCAP) and periodontal ligament stem
cells (PDLSCs). Arch Oral Biol. 58:997–1006. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang J, Liu B, Gu S and Liang J: Effects
of Wnt/β-catenin signalling on proliferation and differentiation of
apical papilla stem cells. Cell Prolif. 45:121–131. 2012.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Qu B, Liu O, Fang X, Zhang H, Wang Y, Quan
H, Zhang J, Zhou J, Zuo J, Tang J and Tang Z: Distal-less homeobox
2 promotes the osteogenic differentiation potential of stem cells
from apical papilla. Cell Tissue Res. 357:133–143. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Dai J and Rabie AB: VEGF: An essential
mediator of both angiogenesis and endochondral ossification. J Dent
Res. 86:937–950. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ryoo HM, Lee MH and Kim YJ: Critical
molecular switches involved in BMP-2-induced osteogenic
differentiation of mesenchymal cells. Gene. 366:51–57. 2006.
View Article : Google Scholar
|
29
|
Uchida S, Sakai A, Kudo H, Otomo H,
Watanuki M, Tanaka M, Nagashima M and Nakamura T: Vascular
endothelial growth factor is expressed along with its receptors
during the healing process of bone and bone marrow after drill-hole
injury in rats. Bone. 32:491–501. 2003. View Article : Google Scholar : PubMed/NCBI
|
30
|
Casagrande L, Demarco FF, Zhang Z, Araujo
FB, Shi S and Nör JE: Dentin-derived BMP-2 and odontoblast
differentiation. J Dent Res. 89:603–608. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Mastrangelo F, Piccirilli M, Dolci M, Teté
S, Speranza L, Patruno A, Gizzi F, Felaco M, Artese L and De Lutiis
MA: Vascular endothelial growth factor (VEGF) in human tooth germ
center. Int J Immunopathol Pharmacol. 18:587–594. 2005.PubMed/NCBI
|
32
|
Scheven BA, Man J, Millard JL, Cooper PR,
Lea SC, Walmsley AD and Smith AJ: VEGF and odontoblast-like cells:
Stimulation by low frequency ultrasound. Arch Oral Biol.
54:185–191. 2009. View Article : Google Scholar
|
33
|
Virtej A, Løes S, Iden O, Bletsa A and
Berggreen E: Vascular endothelial growth factors signalling in
normal human dental pulp: A study of gene and protein expression.
Eur J Oral Sci. 121:92–100. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wu J, Huang GT, He W, Wang P, Tong Z, Jia
Q, Dong L, Niu Z and Ni L: Basic fibroblast growth factor enhances
stemness of human stem cells from the apical papilla. J Endod.
38:614–622. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Choi MH, Noh WC, Park JW, Lee JM and Suh
JY: Gene expression pattern during osteogenic differentiation of
human periodontal ligament cells in vitro. J Periodontal Implant
Sci. 41:167–175. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
MacDougall M, Gu TT and Simmons D: Dentin
matrix protein-1, a candidate gene for dentinogenesis imperfecta.
Connect Tissue Res. 35:267–272. 1996. View Article : Google Scholar : PubMed/NCBI
|
37
|
Lee SY, Kim SY, Park SH, Kim JJ, Jang JH
and Kim EC: Effects of recombinant dentin sialoprotein in dental
pulp cells. J Dent Res. 91:407–412. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhang W, Zhu C, Ye D, Xu L, Zhang X, Wu Q,
Zhang X, Kaplan DL and Jiang X: Porous silk scaffolds for delivery
of growth factors and stem cells to enhance bone regeneration. PloS
One. 9:e1023712014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang W, Zhu C, Wu Y, Ye D, Wang S, Zou D,
Zhang X, Kaplan DL and Jiang X: VEGF and BMP-2 promote bone
regeneration by facilitating bone marrow stem cell homing and
differentiation. Eur Cell Mater. 27:1–11; discussion 11–12. 2014.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Bai Y, Li P, Yin G, Huang Z, Liao X, Chen
X and Yao Y: BMP-2, VEGF and bFGF synergistically promote the
osteogenic differentiation of rat bone marrow-derived mesenchymal
stem cells. Biotechnol Lett. 35:301–308. 2013. View Article : Google Scholar
|
41
|
Xiao C, Zhou H, Liu G, Zhang P, Fu Y, Gu
P, Hou H, Tang T and Fan X: Bone marrow stromal cells with a
combined expression of BMP-2 and VEGF-165 enhanced bone
regeneration. Biomed Mater. 6:0150132011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Tian XB, Sun L, Yang SH, Fu RY, Wang L, Lu
TS, Zhang YK and Fu DH: Ectopic osteogenesis of mouse bone marrow
stromal cells transfected with BMP 2/VEGF (165) genes in vivo.
Orthop Surg. 1:322–325. 2009. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hou H, Zhang X, Tang T, Dai K and Ge R:
Enhancement of bone formation by genetically-engineered bone marrow
stromal cells expressing BMP-2, VEGF and angiopoietin-1. Biotechnol
Lett. 31:1183–1189. 2009. View Article : Google Scholar : PubMed/NCBI
|
44
|
Behr B, Sorkin M, Lehnhardt M, Renda A,
Longaker MT and Quarto N: A comparative analysis of the osteogenic
effects of BMP-2, FGF-2 and VEGFA in a calvarial defect model.
Tissue Eng Part A. 18:1079–1086. 2012. View Article : Google Scholar :
|
45
|
Li P, Bai Y, Yin G, Pu X, Huang Z, Liao X,
Chen X and Yao Y: Synergistic and sequential effects of BMP-2, bFGF
and VEGF on osteogenic differentiation of rat osteoblasts. J Bone
Miner Metab. 32:627–635. 2014. View Article : Google Scholar
|
46
|
Akeel S, El-Awady A, Hussein K, El-Refaey
M, Elsalanty M, Sharawy M and Al-Shabrawey M: Recombinant bone
morphogenetic protein-2 induces up-regulation of vascular
endothelial growth factor and interleukin 6 in human
pre-osteoblasts: Role of reactive oxygen species. Arch Oral Biol.
57:445–452. 2012. View Article : Google Scholar
|