1
|
Conti P and Shaik-Dasthagirisaeb Y:
Atherosclerosis: A chronic inflammatory disease mediated by mast
cells. Cent Eur J Immunol. 40:3–386. 2015.
|
2
|
Lin J, Shou X, Mao X, Dong J, Mohabeer N,
Kushwaha KK, Wang L, Su Y, Fang H and Li D: Oxidized low density
lipoprotein induced caspase-1 mediated pyroptotic cell death in
macrophages: Implication in lesion instability? PLoS One.
8:e621482013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Rajamäki K, Lappalainen J, Oörni K,
Välimäki E, Matikainen S, Kovanen PT and Eklund KK: Cholesterol
crystals activate the NLRP3 inflammasome in human macrophages: A
novel link between cholesterol metabolism and inflammation. PLoS
One. 5:e117652010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Jiang Y, Wang M, Huang K, Zhang Z, Shao N,
Zhang Y, Wang W and Wang S: Oxidized low-density lipoprotein
induces secretion of interleukin-1β by macrophages via reactive
oxygen species-dependent NLRP3 inflammasome activation. Biochem
Biophys Res Commun. 425:121–126. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhou R, Tardivel A, Thorens B, Choi I and
Tschopp J: Thioredoxin-interacting protein links oxidative stress
to inflammasome activation. Nat Immunol. 11:136–140. 2010.
View Article : Google Scholar
|
6
|
Dostert C, Pétrilli V, Van Bruggen R,
Steele C, Mossman BT and Tschopp J: Innate immune activation
through Nalp3 inflammasome sensing of asbestos and silica. Science.
320:674–677. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yu J, Nagasu H, Murakami T, Hoang H,
Broderick L, Hoffman HM and Horng T: Inflammasome activation leads
to Caspase-1-dependent mitochondrial damage and block of mitophagy.
Proc Natl Acad Sci USA. 111:15514–15519. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Park SY, Choi B, Cheon H, Pak YK, Kulawiec
M, Singh KK and Lee MS: Cellular aging of mitochondrial
DNA-depleted cells. Biochem Biophys Res Commun. 325:1399–1405.
2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Arduino DM, Esteves AR, Cortes L, Silva
DF, Patel B, Grazina M, Swerdlow RH, Oliveira CR and Cardoso SM:
Mitochondrial metabolism in Parkinson's disease impairs quality
control autophagy by hampering microtubule-dependent traffic. Hum
Mol Genet. 21:4680–4702. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Prigione A and Cortopassi G: Mitochondrial
DNA deletions and chloramphenicol treatment stimulate the
autophagic transcript ATG12. Autophagy. 3:377–380. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Park SY, Chang I, Kim JY, Kang SW, Park
SH, Singh K and Lee MS: Resistance of mitochondrial DNA-depleted
cells against cell death: Role of mitochondrial superoxide
dismutase. J Biol Chem. 279:7512–7520. 2004. View Article : Google Scholar
|
12
|
Ferraresi R, Troiano L, Pinti M, Roat E,
Lugli E, Quaglino D, Taverna D, Bellizzi D, Passarino G and
Cossarizza A: Resistance of mtDNA-depleted cells to apoptosis.
Cytometry A. 73:528–537. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Brar SS, Meyer JN, Bortner CD, Van Houten
B and Martin WJ II: Mitochondrial DNA-depleted A549 cells are
resistant to bleomycin. Am J Physiol Lung Cell Mol Physiol.
303:L413–L424. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kirii H, Niwa T, Yamada Y, Wada H, Saito
K, Iwakura Y, Asano M, Moriwaki H and Seishima M: Lack of
interleukin-1beta decreases the severity of atherosclerosis in
ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 23:656–660.
2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ribble D, Goldstein NB, Norris DA and
Shellman YG: A simple technique for quantifying apoptosis in
96-well plates. BMC Biotechnol. 5:122005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lee MS, Kim JY and Park SY: Resistance of
rho(0) cells against apoptosis. Ann N Y Acad Sci. 1011:146–153.
2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
King MP and Attardi G: Isolation of human
cell lines lacking mitochondrial DNA. Methods Enzymol. 264:304–313.
1996. View Article : Google Scholar : PubMed/NCBI
|
18
|
Bergsbaken T, Fink SL and Cookson BT:
Pyroptosis: Host cell death and inflammation. Nat Rev Microbiol.
7:99–109. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Fink SL and Cookson BT: Apoptosis,
pyroptosis and necrosis: Mechanistic description of dead and dying
eukaryotic cells. Infect Immun. 73:1907–1916. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhou R, Yazdi AS, Menu P and Tschopp J: A
role for mitochondria in NLRP3 inflammasome activation. Nature.
469:221–225. 2011. View Article : Google Scholar
|
21
|
Sousa CA and Soares EV: Mitochondria are
the main source and one of the targets of Pb (lead)-induced
oxidative stress in the yeast Saccharomyces cerevisiae. Appl
Microbiol Biotechnol. 98:5153–5160. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Nowicki M, Müller K, Serke H, Kosacka J,
Vilser C, Ricken A and Spanel-Borowski K: Oxidized low-density
lipoprotein (oxLDL)-induced cell death in dorsal root ganglion cell
cultures depends not on the lectin-like oxLDL receptor-1 but on the
toll-like receptor-4. J Neurosci Res. 88:403–412. 2010. View Article : Google Scholar
|
23
|
Serke H, Vilser C, Nowicki M, Hmeidan FA,
Blumenauer V, Hummitzsch K, Lösche A and Spanel-Borowski K:
Granulosa cell subtypes respond by autophagy or cell death to
oxLDL-dependent activation of the oxidized lipoprotein receptor 1
and toll-like 4 receptor. Autophagy. 5:991–1003. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Serke H, Bausenwein J, Hirrlinger J,
Nowicki M, Vilser C, Jogschies P, Hmeidan FA, Blumenauer V and
Spanel-Borowski K: Granulosa cell subtypes vary in response to
oxidized low-density lipoprotein as regards specific lipoprotein
receptors and antioxidant enzyme activity. J Clin Endocrinol Metab.
95:3480–3490. 2010. View Article : Google Scholar : PubMed/NCBI
|