1
|
Butler AE, Janson J, Bonner-Weir S, Ritzel
R, Rizza RA and Butler PC: Beta-cell deficit and increased
beta-cell apoptosis in humans with type 2 diabetes. Diabetes.
52:102–110. 2003. View Article : Google Scholar
|
2
|
Mandrup-Poulsen T: Apoptotic signal
transduction pathways in diabetes. Biochem Pharmacol. 66:1433–1440.
2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ardestani A, Paroni F, Azizi Z, Kaur S,
Khobragade V, Yuan T, Frogne T, Tao W, Oberholzer J, Pattou F, et
al: MST1 is a key regulator of beta cell apoptosis and dysfunction
in diabetes. Nat Med. 20:385–397. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhou Z, Zhu C, Ren J and Dong S: A
graphene-based real-time fluorescent assay of deoxyribonuclease I
activity and inhibition. Anal Chim Acta. 740:88–92. 2012.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Kaneko Y, Takeshita H, Mogi K, Nakajima T,
Yasuda T, Itoi M, Kuwano H and Kishi K: Molecular, biochemical and
immunological analyses of canine pancreatic DNase I. J Biochem.
134:711–718. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Funakoshi A, Wakasugi H and Ibayashi H:
Clinical investigation of serum deoxyribonuclease: II. Clinical
studies of serum deoxyribonuclease activity in pancreatic disease.
Gastroenterol Jpn. 14:436–440. 1979.PubMed/NCBI
|
7
|
Martinez-Valle F, Balada E, Ordi-Ros J,
Bujan-Rivas S, Sellas-Fernandez A and Vilardell-Tarres M: DNase 1
activity in patients with systemic lupus erythematosus:
Relationship with epidemiological, clinical, immunological and
therapeutical features. Lupus. 18:418–423. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kuribara J, Tada H, Kawai Y, Kawaguchi R,
Hoshizaki H, Arakawa K, Kitayama M, Kajinami K, Kurabayashi M,
Oshima S, et al: Levels of serum deoxyribonuclease I activity on
admission in patients with acute myocardial infarction can be
useful in predicting left ventricular enlargement due to
remodeling. J Cardiol. 53:196–203. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
St-Onge L, Wehr R and Gruss P: Pancreas
development and diabetes. Curr Opin Genet Dev. 9:295–300. 1999.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhu B, Gong Y, Chen P, Zhang H, Zhao T and
Li P: Increased DNase I activity in diabetes might be associated
with injury of pancreas. Mol Cell Biochem. 393:23–32. 2014.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Tinazzi E, Puccetti A, Gerli R, Rigo A,
Migliorini P, Simeoni S, Beri R, Dolcino M, Martinelli N, Corrocher
R and Lunardi C: Serum DNase I, soluble Fas/FasL levels and cell
surface Fas expression in patients with SLE: A possible explanation
for the lack of efficacy of hrDNase I treatment. Int Immunol.
21:237–243. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Errami Y, Naura AS, Kim H, Ju J, Suzuki Y,
El-Bahrawy AH, Ghonim MA, Hemeida RA, Mansy MS, Zhang J, et al:
Apoptotic DNA fragmentation may be a cooperative activity between
caspase-activated deoxyribonuclease and the poly(ADP-ribose)
polymerase-regulated DNAS1L3, an endoplasm ic reticulum-localized
endonuclease that translocates to the nucleus during apoptosis. J
Biol Chem. 288:3460–3468. 2013. View Article : Google Scholar :
|
13
|
Shiokawa D and Tanuma S: Characterization
of human DNase I family endonucleases and activation of DNase gamma
during apoptosis. Biochemistry. 40:143–152. 2001. View Article : Google Scholar : PubMed/NCBI
|
14
|
Rosner K, Kasprzak MF, Horenstein AC,
Thurston HL, Abrams J, Kerwin LY, Mehregan DA and Mehregan DR:
Engineering a waste management enzyme to overcome cancer resistance
to apoptosis: Adding DNase1 to the anti-cancer toolbox. Cancer Gene
Ther. 18:346–357. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Oliveri M, Daga A, Cantoni C, Lunardi C,
Millo R and Puccetti A: DNase I mediates internucleosomal DNA
degradation in human cells undergoing drug-induced apoptosis. Eur J
Immunol. 31:743–751. 2001. View Article : Google Scholar : PubMed/NCBI
|
16
|
Hall AK: Molecular interactions between
G-actin, DNase I and the beta-thymosins in apoptosis: A hypothesis.
Med Hypotheses. 43:125–131. 1994. View Article : Google Scholar : PubMed/NCBI
|
17
|
Martínez Valle F, Balada E, Ordi-Ros J and
Vilardell-Tarres M: DNase 1 and systemic lupus erythematosus.
Autoimmun Rev. 7:359–363. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Martinez-Valle F, Balada E, Ordi-Ros J,
Bujan-Rivas S, Sellas-Fernandez A and Vilardell-Tarres M: DNase1
activity in systemic lupus erythematosus patients with and without
nephropathy. Rheumatol Int. 30:1601–1604. 2010. View Article : Google Scholar
|
19
|
Fujibayashi K, Kawai Y, Kitayama M, Akao
H, Ishida R, Motoyama A, Wakasa M, Arakawa K, Ueki M, Kajinami K
and Yasuda T: Serum deoxyribonuclease I activity can be a useful
diagnostic marker for the early diagnosis of unstable angina
pectoris or non-ST-segment elevation myocardial infarction. J
Cardiol. 59:258–265. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yasuda T, Iida R, Kawai Y, Nakajima T,
Kominato Y, Fujihara J and Takeshita H: Serum deoxyribonuclease I
can be used as a useful marker for diagnosis of death due to
ischemic heart disease. Leg Med (Tokyo). 11(Suppl 1): S213–S215.
2009. View Article : Google Scholar
|
21
|
Boyle AP, Davis S, Shulha HP, Meltzer P,
Margulies EH, Weng Z, Furey TS and Crawford GE: High-resolution
mapping and characterization of open chromatin across the genome.
Cell. 132:311–322. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Thurman RE, Rynes E, Humbert R, Vierstra
J, Maurano MT, Haugen E, Sheffield NC, Stergachis AB, Wang H,
Vernot B, et al: The accessible chromatin landscape of the human
genome. Nature. 489:75–82. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Maurano MT, Humbert R, Rynes E, Thurman
RE, Haugen E, Wang H, Reynolds AP, Sandstrom R, Qu H, Brody J, et
al: Systematic localization of common disease-associated variation
in regulatory DNA. Science. 337:1190–1195. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Stitzel ML, Sethupathy P, Pearson DS,
Chines PS, Song L, Erdos MR, Welch R, Parker SC, Boyle AP, Scott
LJ, et al: Global epigenomic analysis of primary human pancreatic
islets provides insights into type 2 diabetes susceptibility loci.
Cell Metab. 12:443–455. 2010. View Article : Google Scholar : PubMed/NCBI
|