1
|
Berg AT, Berkovic SF, Brodie MJ,
Buchhalter J, Cross JH, van Emde Boas W, Engel J, French J, Glauser
TA, Mathern GW, et al: Revised terminology and concepts for
organization of seizures and epilepsies: Report of the ILAE
commission on classification and terminology, 2005–2009. Epilepsia.
51:676–685. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Meldrum BS and Rogawski MA: Molecular
targets for antiepileptic drug development. Neurotherapeutics.
4:18–61. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Frankel WN: Detecting genes in new and old
mouse models for epilepsy: A prospectus through the magnifying
glass. Epilepsy Res. 36:97–110. 1999. View Article : Google Scholar : PubMed/NCBI
|
4
|
Jensen FE: Epilepsy in 2013: Progress
across the spectrum of epilepsy research. Nat Rev Neurol. 10:63–64.
2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Epi4K Consortium; Epilepsy Phenome/Genome
Project; Allen AS, Berkovic SF, Cossette P, Delanty N, Dlugos D,
Eichler EE, Epstein MP, Glauser T, et al: De novo mutations in
epileptic encephalopathies. Nature. 501:217–221. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
EuroEPINOMICS-RES Consortium, Epilepsy
Phenome/Genome Project, Epi4K Consortium: De novo mutations in
synaptic transmission genes including DNM1 cause epileptic
encephalopathies. Am J Hum Genet. 95:360–370. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Vezzani A, French J, Bartfai T and Baram
TZ: The role of inflammation in epilepsy. Nat Rev Neurol. 7:31–40.
2011. View Article : Google Scholar
|
8
|
Fukata Y, Lovero KL, Iwanaga T, Watanabe
A, Yokoi N, Tabuchi K, Shigemoto R, Nicoll RA and Fukata M:
Disruption of LGI1-linked synaptic complex causes abnormal synaptic
transmission and epilepsy. Proc Natl Acad Sci. 107:3799–3804. 2010.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Vissel B, Royle G, Christie B, Schiffer
HH, Ghetti A, Tritto T, Perez-Otano I, Radcliffe RA, Seamans J,
Sejnowski T, et al: The role of RNA editing of kainate receptors in
synaptic plasticity and seizures. Neuron. 29:217–227. 2001.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Gorter JA, van Vliet EA, Aronica E, Breit
T, Rauwerda H, Lopes da Silva FH and Wadman WJ: Potential new
antiepileptogenic targets indicated by microarray analysis in a rat
model for temporal lobe epilepsy. J Neurosci. 26:11083–11110. 2006.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Tecott LH, Sun LM, Akana SF, Strack AM,
Lowenstein DH, Dallman MF and Julius D: Eating disorder and
epilepsy in mice lacking 5-HT2c serotonin receptors. Nature.
374:542–546. 1995. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Brooks-Kayal AR, Shumate MD, Jin H,
Rikhter TY and Coulter DA: Selective changes in single cell GABAA
receptor subunit expression and function in temporal lobe epilepsy.
Nat Med. 4:1166–1172. 1998. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Lukasiuk K and Pitkänen A: Gene and
protein expression in experimental status epilepticus. Epilepsia.
48(Suppl 8): S28–S32. 2007. View Article : Google Scholar
|
14
|
Mudunuri U, Che A, Yi M and Stephens RM:
bioDBnet: The biological database network. Bioinformatics.
25:555–556. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Huang da W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Huang da W, Sherman BT and Lempicki RA:
Bioinformatics enrichment tools: Paths toward the comprehensive
functional analysis of large gene lists. Nucleic Acids Res.
37:1–13. 2009. View Article : Google Scholar
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2−ΔΔCt method. Methods. 25:402–408. 2001. View Article : Google Scholar
|
18
|
Sutula TP: Secondary epileptogenesis,
kindling and intractable epilepsy: A reappraisal from the
perspective of neural plasticity. Int Rev Neurobiol. 45:355–386.
2001. View Article : Google Scholar
|
19
|
Löscher W: Critical review of current
animal models of seizures and epilepsy used in the discovery and
development of new antiepileptic drugs. Seizure. 20:359–368. 2011.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Gibbs RA, Weinstock GM, Metzker ML, Muzny
DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch
PE, et al: Genome sequence of the Brown Norway rat yields insights
into mammalian evolution. Nature. 428:493–521. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Arion D, Sabatini M, Unger T, Pastor J,
Alonso-Nanclares L, Ballesteros-Yáñez I, García Sola R, Muñoz A,
Mirnics K and DeFelipe J: Correlation of transcriptome profile with
electrical activity in temporal lobe epilepsy. Neurobiol Dis.
22:374–387. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Beaumont TL, Yao B, Shah A, Kapatos G and
Loeb JA: Layer-specific CREB target gene induction in human
neocortical epilepsy. J Neurosci. 32:14389–14401. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Winden KD, Karsten SL, Bragin A, Kudo LC,
Gehman L, Ruidera J, Geschwind DH and Engel J Jr: A systems level,
functional genomics analysis of chronic epilepsy. PloS One.
6:e207632011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Okamoto OK, Janjoppi L, Bonone FM, Pansani
AP, da Silva AV, Scorza FA and Cavalheiro EA: Whole transcriptome
analysis of the hippocampus: Toward a molecular portrait of
epileptogenesis. BMC Genomics. 11:2302010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Christensen KV, Leffers H, Watson WP,
Sánchez C, Kallunki P and Egebjerg J: Levetiracetam attenuates
hippocampal expression of synaptic plasticity-related immediate
early and late response genes in amygdala-kindled rats. BMC
Neurosci. 11:92010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Nikitidou L, Kanter-Schlifke I, Dhondt J,
Carmeliet P, Lambrechts D and Kokaia M: VEGF receptor-2 (Flk-1)
overexpression in mice counteracts focal epileptic seizures. PloS
One. 7:e405352012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Pitkänen A and Lukasiuk K: Molecular and
cellular basis of epileptogenesis in symptomatic epilepsy. Epilepsy
Behav. 14(Suppl 1): S16–S25. 2009. View Article : Google Scholar
|
28
|
Newton SS, Collier EF, Bennett AH, Russell
DS and Duman RS: Regulation of growth factor receptor bound 2 by
electroconvulsive seizure. Brain Res. 129:185–188. 2004. View Article : Google Scholar
|
29
|
Noebels J: A perfect storm: Converging
paths of epilepsy and Alzheimer's dementia intersect in the
hippocampal formation. Epilepsia. 52(Suppl 1): S39–S46. 2011.
View Article : Google Scholar
|
30
|
Morin-Brureau M, Lebrun A, Rousset MC,
Fagni L, Bockaert J, de Bock F and Lerner-Natoli M: Epileptiform
activity induces vascular remodeling and zonula occludens 1
downregulation in organotypic hippocampal cultures: Role of VEGF
signaling pathways. J Neurosci. 31:10677–10688. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Friedman A, Kaufer D and Heinemann U:
Blood-brain barrier breakdown-inducing astrocytic transformation:
Novel targets for the prevention of epilepsy. Epilepsy Res.
85:142–149. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Friedman A: Blood-brain barrier
dysfunction, status epilepticus, seizures and epilepsy: A puzzle of
a chicken and egg? Epilepsia. 52(Suppl 8): S19–S20. 2011.
View Article : Google Scholar
|