1
|
Chait A and Brunzell JD: Acquired
hyperlipidemia (secondary dyslipoproteinemias). Endocrinol Metab
Clin North Am. 19:259–278. 1990.PubMed/NCBI
|
2
|
Williams AD: Hyperlipidaemia and
atherogenesis. Med Hypotheses. 33:213–217. 1990. View Article : Google Scholar : PubMed/NCBI
|
3
|
Xie Y, He YB, Zhang SX, Pan AQ, Zhang J,
Guan XH, Wang JX and Guo WS: Treatment of combined hyperlipidemia
patients by jiangzhi tongluo soft capsule combined atorvastatin
calcium tablet: A clinical study. Chin J Int Trad Western Med.
34:1059–1063. 2014.In Chinese.
|
4
|
Fruebis J, Bird DA, Pattison J and
Palinski W: Extent of antioxidant protection of plasma LDL is not a
predictor of the antiatherogenic effect of antioxidants. J Lipid
Res. 38:2455–2464. 1997.
|
5
|
Tall AR, Yvan-Charvet L, Terasaaka N,
Pagler T and Wang N: HDL, ABC transporters and cholesterol efflux:
Implications for the treatment of atherosclerosis. Cell Metab.
7:365–375. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Tang F, Wu X, Wang T, Wang P, Li R, Zhang
H, Gao J, Chen S, Bao L, Huang H and Liu P: Tanshinone IIA
attenuates atherosclerotic calcification in rat model by inhibition
of oxidative stress. Vascul Pharmacol. 46:427–438. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gao S, Liu Z, Li H, Little PJ, Liu P and
Xu S: Cardiovascular actions and therapeutic potential of
Tanshinone IIA. Atherosclerosis. 220:3–10. 2012. View Article : Google Scholar
|
8
|
Xu W, Yang J and Wu LM: Cardioprotective
effects of anshinone IIA on myocardial ischemia injury in rats.
Pharmazie. 64:332–336. 2009.PubMed/NCBI
|
9
|
Gong Z, Huang C, Sheng X, Zhang Y, Li Q,
Wang MW, Peng L and Zang YQ: The role of Tanshinone IIA in the
treatment of obesity through peroxisome proliferator-activated
receptor gamma antag-onism. Endocrinology. 150:104–113. 2009.
View Article : Google Scholar
|
10
|
Tang FT, Cao Y, Wang TQ, Wang LJ, Guo J,
Zhou XS, Xu SW, Liu WH, Liu PQ and Huang HQ: Tanshinone IIA
attenuates atherosclerosis in ApoE (−/−) mice through
down-regulation of scavenger receptor expression. Eur J Pharmacol.
650:275–884. 2011. View Article : Google Scholar
|
11
|
Jia LQ, Feng JY, Yang GL, Chen WN and Chen
Y: Effect of Tanshinone IIA on TLR4 and TNF-α of endothelial cells
induced by LPS. Chin J Cell Mol Immunol. 27:733–735. 2011.In
Chinese.
|
12
|
Jia LQ, Yang GL, Ren L, Chen WN, Feng JY,
Gao Y, Zhang L, Li XT and Lei P: Tanshinone IIA reduces apoptosis
induced by hydrogen peroxide in the human endothelium-derived
EA.hy926 cells. J Ethnopharmacol. 143:100–108. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Horie T, Ono K, Horiguchi M, Nishi H,
Nakamura T, Nagao K, Kinoshita M, Kuwabara Y, Marusawa H, Iwanaga
Y, et al: MicroRNA-33 encoded by an intron of sterol regulatory
element-binding protein 2 (SREBP-2l) regulates HDL in vivo. Proc
Natl Acad Sci USA. 107:17321–17326. 2010. View Article : Google Scholar
|
14
|
Dávalos A, Goedeke L, Smibert P, Ramirez
CM, Warrier NP, Andreo U, Cirera-Salinas D, Rayner K, Suresh U,
Pastor-Pareja JC, et al: miR-33a/b contribute to the regulation of
fatty acid metabolism and insulin signaling. Proc Natl Acad Sci
USA. 108:9232–9237. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wu CY, Tang ZH, Liu LS and Jiang ZS:
Selecting pharmacological targets of Pcsk9. Chin J Biochem Mol
Biol. 25:991–996. 2009.In Chinese.
|
16
|
Costet P, Cariou B, Lambert G, Lalanne F,
Lardeux B, Jarnoux AL, Grefhorst A, Staels B and Krempf M: Hepatic
Pcsk9 expression is regulated by nutritional status via insulin and
sterol regulatory element-binding protein 1c. J Biol Chem.
281:6211–6218. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Attie AD: The mystery of Pcsk9.
Arterioscler Thromb Vasc Biol. 24:1337–1339. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Steinberg D and Witztum JL: Inhibition of
Pcsk9: A powerful weapon for achieving ideal LDL cholesterol
levels. Proc Natl Acad Sci USA. 106:9546–9547. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Dong B, Wu MH, Li H, Kraemer FB, Adeli K,
Seidah NG, Park SW and Liu J: Strong iduction of Pcsk9 gene
expression through HNF1alpha and SREBP-2: Mechanism for the
resistance to LDL-cholesterol lowering effect of statins in
dyslipidemic hamsters. J Lipid Res. 51:1486–1495. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Najafi-Shoushtari SH, Kristo F, Li Y,
Shioda T, Cohen DE, Gerszten RE and Näär AM: MicroRNA-33 and the
SREBP host genes cooperate to control cholesterol homeostasi.
Science. 328:1566–1569. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Attie AD: ABCA1: At the nexus of
cholesterol, HDL and atherosclerosis. Trends Biochem Sci.
32:172–179. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Fernández-Hernando C, Ramírez CM, Goedeke
L and Suárez Y: MicroRNAs in metabolic disease. Arterioscler Thromb
Vasc Bio. 33:178–185. 2013. View Article : Google Scholar
|
23
|
Gerin I, Clerbaux LA, Haumont O, Lanthier
N, Das AK, Burant CF, Leclercq IA, MacDougald OA and Bommer GT:
Expression of miR-33 froman SREBP-2 intron inhibits cholesterol
export and fatty acid oxidation. J Biol Chem. 285:33652–33661.
2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Fernández-Hernando C, Suárez Y, Rayner KJ
and Moore KJ: MicroRNAs in lipid metabolism. Curr Opin Lipidol.
22:86–92. 2011. View Article : Google Scholar :
|
25
|
Lewis GF and Rader DJ: New insights into
the regulation of HDL metabolism and reverse cholesterol transport.
Circ Res. 96:1221–1232. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Rayner KJ, Sheedy FJ, Esau CC, Hussain FN,
Temel RE, Parathath S, van Gils JM, Rayner AJ, Chang AN, Suarez Y,
et al: Antagonism of miR-33 in mice promotes reverse cholesterol
transport and regression of atherosclerosis. J Clin Invest.
121:2921–2931. 2011. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Rayner KJ, Esau CC, Hussain FN, McDaniel
AL, Marshall SM, van Gils JM, Ray TD, Sheedy FJ, Goedeke L, Liu X,
et al: Inhibition of miR-33a/b in non-human primates raises plasma
HDL and lowera VLDL triglycerides. Nature. 478:404–447. 2011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu W, Zhai C, Zhang X, Zhang H, Jiang M,
Zhou S, Liu Y, Zhao N and Zhao J: Research of the whole
grain-soybean compound package to regulate the cholesterol
metabolism by SREBP-2, LDLR and visfatin. J Hyg Res. 42:196–202.
2013.In Chinese.
|
29
|
Xu W, Liu L and Homby D: c-IAP1 binds and
processes Pcsk9 protein: Linking the c-IAP1 in a TNF-α pathway to
Pcsk9-mediated LDLR degradation pathway. Molecules. 17:12086–12101.
2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Mani DN, Bawankule D and Saroj BK:
Hyperlipidemic model: Studying lipid profile in small experimental
animal. Int J Pharmacy Pharm Sci. 4:337–340. 2012.
|
31
|
Munshi RP, Joshi SG and Rane BN:
Development of an experimental diet model in rats to study
hyperlipidemia and insulin resistance, markers for coronary heart
disease. Indian J Pharmacol. 46:270–246. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Omagari K, Kadokawa Y, Masuda J, Egawa I,
Sawa T, Hazama H, Ohba K, Isomoto H, Mizuta Y, Hayashida K, et al:
Fatty liver in non-alcoholic non overweight Japanese adults:
Incidence and clinical characteristics. J Gastroenterol Hepatol.
17:1098–1105. 2002. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hilden M, Christoffersen P, Juhl E and
Dalgaard JB: Liver histology in a 'normal' population-examinations
of 503 consecutive fatal traffic casualties. Scand J Gastroenterol.
12:593–597. 1997. View Article : Google Scholar
|
34
|
Shen L, Fan JG, Shao Y, Zeng MD, Wang JR,
Luo GH, Li JQ and Chen SY: Prevalence of nonalcoholic fatty liver
among administrative officers in Shanghai: An epidemiological
survey. World J Gastroenterol. 9:1106–1110. 2003. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ikonen E: Cellular cholesterol trafficking
and compartmentalization. Nat Rev Mol Cell Biol. 9:125–138. 2008.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Sone H, Tanaka S, Tanaka S, Iimuro S, Oida
K, Yamasaki Y, Oikawa S, Ishibashi S, Katayama S, Ohashi Y, et al:
Serum level of triglycerides is a potent risk factor comparable to
LDL cholesterol for coronary heart disease in Japanese patients
with type 2 diabetes: Subanalysis of the Japan Diabetes
Complications Study (JDCS). J Clin Endocrinol Metab. 96:3448–3456.
2011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Brown MS and Goldstein JL: A
receptor-mediated pathway for cholesterol homeostasis. Science.
232:34–47. 1986. View Article : Google Scholar : PubMed/NCBI
|
38
|
Sharpe LJ and Brown AJ: Rapamycin
down-regulates LDL-receptor expression independently of SREBP-2.
Biochem Biophys Res Commun. 373:670–674. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Rayner KJ, Suárez Y, Dávalos A, Parathath
S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ and
Fernández-Hernando C: MiR-33 contributes to the regulation of
cholesterol homeostasis. Science. 328:1570–1573. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Maxwell KN and Breslow JL:
Adenoviral-mediated expression of Pcsk9 in mice results in a
low-density lipoprotein receptor knockout phenotype. Proc Natl Acad
Sci USA. 101:7100–7105. 2004. View Article : Google Scholar : PubMed/NCBI
|
41
|
Abifadel M, Varret M, Rabès JP, Allard D,
Ouguerram K, Devillers M, Cruaud C, Benjannet S, Wickham L, Erlich
D, et al: Mutations in Pcsk9 cause autosomal dominant
hypercholesterolemia. Nat Genet. 34:154–156. 2003. View Article : Google Scholar : PubMed/NCBI
|
42
|
Krol J, Loedige I and Filipowicz W: The
widespread regulation of microRNA biogenesis, function and decay.
Nat Rev Genet. 11:597–610. 2010.PubMed/NCBI
|
43
|
Kato M, de Lencastre A, Pincus Z and Slack
FJ: Dynamic expression of small non-coding RNAs, including novel
microRNAs and piRNAs/21U-RNAs, during Caenorhabditis elegans
development. Genome Biol. 10:R542009. View Article : Google Scholar : PubMed/NCBI
|
44
|
Roglans N, Peris C, Verd JC, Alegret M,
Vázquez M, Sánchez RM and Laguna JC: Increase in hepatic expression
of SREBP-2 by gemfibrozil administration to rats. Biochem
Pharmacol. 62:803–809. 2011. View Article : Google Scholar
|
45
|
Horton JD and Shimomura I: Sterol
regulatory element-binding proteins: Activators of cholesterol and
fatty acid biosynthesis. Curr Opin Lipidol. 10:143–150. 1999.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Horton JD: Sterol regulatory
element-binding proteins: Transcriptional activators of lipid
synthesis. Biochem Soc Trans. 30:1091–1095. 2002. View Article : Google Scholar : PubMed/NCBI
|