1
|
Alliston T and Derynck R: Medicine:
Interfering with bone remodelling. Nature. 416:686–687. 2002.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Karsenty G and Wagner EF: Reaching a
genetic and molecular understanding of skeletal development. Dev
Cell. 2:389–406. 2002. View Article : Google Scholar : PubMed/NCBI
|
3
|
Theill LE, Boyle WJ and Penninger JM:
RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu
Rev Immunol. 20:795–823. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Walsh MC, Kim N, Kadono Y, Rho J, Lee SY,
Lorenzo J and Choi Y: Osteoimmunology: Interplay between the immune
system and bone metabolism. Annu Rev Immunol. 24:33–63. 2006.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Binder NB, Niederreiter B, Hoffmann O,
Stange R, Pap T, Stulnig TM, Mack M, Erben RG, Smolen JS and
Redlich K: Estrogen-dependent and C-C chemokine
receptor-2-dependent pathways determine osteoclast behavior in
osteoporosis. Nat Med. 15:417–424. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Fata JE, Kong YY, Li J, Sasaki T,
Irie-Sasaki J, Moorehead RA, Elliott R, Scully S, Voura EB, Lacey
DL, et al: The osteoclast differentiation factor
osteoprotegerin-ligand is essential for mammary gland development.
Cell. 103:41–50. 2000. View Article : Google Scholar : PubMed/NCBI
|
7
|
Fuller K, Wong B, Fox S, Choi Y and
Chambers TJ: TRANCE is necessary and sufficient for
osteoblast-mediated activation of bone resorption in osteoclasts. J
Exp Med. 188:997–1001. 1998. View Article : Google Scholar : PubMed/NCBI
|
8
|
Boyle WJ, Simonet WS and Lacey DL:
Osteoclast differentiation and activation. Nature. 423:337–342.
2003. View Article : Google Scholar : PubMed/NCBI
|
9
|
Teitelbaum SL and Ross FP: Genetic
regulation of osteoclast development and function. Nat Rev Genet.
4:638–649. 2003. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Takayanagi H, Kim S, Koga T, Nishina H,
Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, et al:
Induction and activation of the transcription factor NFATc1 (NFAT2)
integrate RANKL signaling in terminal differentiation of
osteoclasts. Dev Cell. 3:889–901. 2002. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhou P, Sun LJ, Dötsch V, Wagner G and
Verdine GL: Solution structure of the core NFATC1/DNA complex.
Cell. 92:687–696. 1998. View Article : Google Scholar : PubMed/NCBI
|
12
|
Na KL: Molecular understanding of
osteoclast differentiation and physiology. J Clin Endocr Metab.
25:264–269. 2010.
|
13
|
Ishida N, Hayashi K, Hattori A, Yogo K,
Kimura T and Takeya T: CCR1 acts downstream of NFAT2 in
osteoclastogenesis and enhances cell migration. J Bone Miner Res.
21:48–57. 2006. View Article : Google Scholar
|
14
|
Soriano P, Montgomery C, Geske R and
Bradley A: Targeted disruption of the c-src proto-oncogene leads to
osteopetrosis in mice. Cell. 64:693–702. 1991. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lakkakorpi PT, Nakamura I, Young M,
Lipfert L, Rodan GA and Duong LT: Abnormal localisation and
hyperclustering of alpha (v)beta (3) integrins and associated
proteins in Src-deficient or tyrphostin A9-treated osteoclasts. J
Cell Sci. 114:149–160. 2001.
|
16
|
Chen J, He JQ, Zheng SY and Huang LQ: OPG
inhibits gene expression of RANK and CAII in mouse osteoclast-like
cell. Rheumatol Int. 32:3393–3398. 2012. View Article : Google Scholar
|
17
|
Chen J and He CQ, Xia QJ, Huang LQ, Hu YJ
and He CQ: Effects of pulsed electromagnetic fields on the mRNA
expression of RANK and CAII in ovariectomized rat osteoclast-like
cell. Connect Tissue Res. 51:1–7. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Pavlos NJ, Xu J, Riedel D, Yeoh JS,
Teitelbaum SL, Papadimitriou JM, Jahn R, Ross FP and Zheng MH:
Rab3D regulates a novel vesicular trafficking pathway that is
required for osteoclastic bone resorption. Mol Cell Biol.
25:5253–5269. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
20
|
Arai F, Miyamoto T, Ohneda O, Inada T,
Sudo T, Brasel K, Miyata T, Anderson DM and Suda T: Commitment and
differentiation of osteoclast precursor cells by the sequential
expression of c-Fms and receptor activator of nuclear factor kappaB
(RANK) receptors. J Exp Med. 190:1741–1754. 1999. View Article : Google Scholar : PubMed/NCBI
|
21
|
Crotti T, Smith MD, Hirsch R, Soukoulis S,
Weedon H, Capone M, Ahern MJ and Haynes D: Receptor activator NF
kappaB ligand (RANKL) and osteoprotegerin (OPG) protein expression
in periodontitis. J Periodontal Res. 38:380–387. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Crotti TN, Smith MD, Findlay DM, Zreiqat
H, Ahern MJ, Weedon H, Hatzinikolous G, Capone M, Holding C and
Haynes DR: Factors regulating osteoclast formation in human tissues
adjacent to peri-implant bone loss: Expression of receptor
activator NFkappaB, RANK ligand and osteoprotegerin. Biomaterials.
25:565–573. 2004. View Article : Google Scholar
|
23
|
Crotti TN, Smith MD, Weedon H, Ahern MJ,
Findlay DM, Kraan M, Tak PP and Haynes DR: Receptor activator
NF-kappa B ligand (RANKL) expression in synovial tissue from
patients with rheumatoid arthritis, spondyloarthropathy,
osteoarthritis, and from normal patients: Semiquantitative and
quantitative analysis. Ann Rheum Dis. 61:1047–1054. 2002.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Hirotani H, Tuohy NA, Woo JT, Stern PH and
Clipstone NA: The calcineurin/nuclear factor of activated T cells
signaling pathway regulates osteoclastogenesis in RAW264.7 cells. J
Biol Chem. 279:13984–13992. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Thomas SM and Brugge JS: Cellular
functions regulated by Src family kinases. Annu Rev Cell Dev Biol.
13:513–609. 1997. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kumagai N, Ohno K, Tameshige R, Hoshijima
M, Yogo K, Ishida N and Takeya T: Induction of mouse c-src in
RAW264 cells is dependent on AP-1 and NF-kappaB and important for
progression to multinucleated cell formation. Biochem Biophys Res
Commun. 325:758–768. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lowe C, Yoneda T, Boyce BF, Chen H, Mundy
GR and Soriano P: Osteopetrosis in Src-deficient mice is due to an
autonomous defect of osteoclasts. Proc Natl Acad Sci USA.
90:4485–4489. 1993. View Article : Google Scholar : PubMed/NCBI
|
28
|
Boyce BF, Yoneda T, Lowe C, Soriano P and
Mundy GR: Requirement of pp60c-src expression for osteoclasts to
form ruffled borders and resorb bone in mice. J Clin Invest.
90:1622–1627. 1992. View Article : Google Scholar : PubMed/NCBI
|