1
|
Sultan N and Rao J: Association between
periodontal disease and bone mineral density in postmenopausal
women: A cross sectional study. Med Oral Patol Oral Cir Bucal.
16:e440–e447. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Streckfus CF, Johnson RB, Nick T, Tsao A
and Tucci M: Comparison of alveolar bone loss, alveolar bone
density and second metacarpal bone density, salivary and gingival
crevicular fluid interleukin-6 concentrations in healthy
premenopausal and postmenopausal women on estrogen therapy. J
Gerontol A Biol Sci Med Sci. 52:M343–M351. 1997. View Article : Google Scholar : PubMed/NCBI
|
3
|
Civitelli R, Pilgram TK, Dotson M,
Muckerman J, Lewandowski N, Armamento-Villareal R,
Yokoyama-Crothers N, Kardaris EE, Hauser J, Cohen S and Hildebolt
CF: Alveolar and postcranial bone density in postmenopausal women
receiving hormone/estrogen replacement therapy: A randomized,
double-blind, placebo-controlled trial. Arch Intern Med.
162:1409–1415. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Palomo L, Bissada NF and Liu J:
Periodontal assessment of postmenopausal women receiving
risedronate. Menopause. 12:685–690. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Liu J, Cao Z and Li C: Intermittent PTH
administration: A novel therapy method for periodontitis-associated
alveolar bone loss. Med Hypotheses. 72:294–296. 2009. View Article : Google Scholar
|
6
|
Strom BL, Schinnar R, Weber AL, Bunin G,
Berlin JA, Baumgarten M, DeMichele A, Rubin SC, Berlin M, Troxel AB
and Rebbeck TR: Case-control study of postmenopausal hormone
replacement therapy and endometrial cancer. Am J Epidemiol.
164:775–786. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Woo SB, Hellstein JW and Kalmar JR:
Narrative [corrected] review: Bisphosphonates and osteonecrosis of
the jaws. Ann Intern Med. 144:753–761. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rizzoli R, Reginster JY, Boonen S, Bréart
G, Diez-Perez A, Felsenberg D, Kaufman JM, Kanis JA and Cooper C:
Adverse reactions and drug-drug interactions in the management of
women with postmenopausal osteoporosis. Calcif Tissue Int.
89:91–104. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Clemett D and Spencer CM: Raloxifene: A
review of its use in postmenopausal osteoporosis. Drugs.
60:379–411. 2000. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang Z, Xiang L, Bai D, Wang W, Li Y, Pan
J, Liu H, Wang S, Xiao GG and Ju D: The protective effect of
Rhizoma Dioscoreae extract against alveolar bone loss in
ovariectomized rats via regulating Wnt and p38 MAPK signaling.
Nutrients. 6:5853–5870. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wu Z, Zhao X and Chen L: Identifying
responsive functional modules from protein-protein interaction
network. Mol Cells. 27:271–277. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Real-Chicharro A, Ruiz-Mostazo I,
Navas-Delgado I, Kerzazi A, Chniber O, Sánchez-Jiménez F, Medina MA
and Aldana-Montes JF: Protopia: A protein-protein interaction tool.
BMC Bioinformatics. 10(Suppl 12): S172009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Martin A, Ochagavia ME, Rabasa LC, Miranda
J, Fernandez-de-Cossio J and Bringas R: BisoGenet: A new tool for
gene network building, visualization and analysis. BMC
Bioinformatics. 11:912010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bader GD and Hogue CW: An automated method
for finding molecular complexes in large protein interaction
networks. BMC Bioinformatics. 4:22003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Huang da W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gomez SM: Prediction of protein-protein
interaction networks. Curr Protoc Bioinformatics. Chapter 8: Unit
8.2. 2003, View Article : Google Scholar
|
18
|
McDonald F: Ion channels in osteoblasts: A
story of two intracellular organelles. Surgeon. 2:63–69. 2004.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Supanchart C and Kornak U: Ion channels
and transporters in osteoclasts. Arch Biochem Biophysics.
473:161–165. 2008. View Article : Google Scholar
|
20
|
Ward DM and Kaplan J: Ferroportin-mediated
iron transport: Expression and regulation. Biochim Biophys Acta.
1823:1426–1433. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li JM and Brooks G: Cell cycle regulatory
molecules (cyclins, cyclin-dependent kinases and cyclin-dependent
kinase inhibitors) and the cardiovascular system; potential targets
for therapy? Eur Heart J. 20:406–420. 1999. View Article : Google Scholar : PubMed/NCBI
|
22
|
Dorée M and Hunt T: From Cdc2 to Cdk1:
When did the cell cycle kinase join its cyclin partner? J Cell Sci.
115:2461–2464. 2002.PubMed/NCBI
|
23
|
Tchetina EV, Maslova KA, Krylov MY and
Myakotkin VA: Association of bone loss with the upregulation of
survival-related genes and concomitant downregulation of Mammalian
target of rapamycin and osteoblast differentiation-related genes in
the peripheral blood of late postmenopausal osteoporotic women. J
Osteoporos. 2015:8026942015.PubMed/NCBI
|
24
|
Wronski TJ, Lowry PL, Walsh CC and
Ignaszewski LA: Skeletal alterations in ovariectomized rats. Calcif
Tissue Int. 37:324–328. 1985. View Article : Google Scholar : PubMed/NCBI
|
25
|
Garnero P, Sornay-Rendu E, Chapuy MC and
Delmas PD: Increased bone turnover in late postmenopausal women is
a major determinant of osteoporosis. J Bone Miner Res. 11:337–349.
1996. View Article : Google Scholar : PubMed/NCBI
|
26
|
Turner RT, Backup P, Sherman PJ, Hill E,
Evans GL and Spelsberg TC: Mechanism of action of estrogen on
intramembranous bone formation: Regulation of osteoblast
differentiation and activity. Endocrinology. 131:883–889.
1992.PubMed/NCBI
|
27
|
Orlić I, Borovecki F, Simić P and
Vukicević S: Gene expression profiling in bone tissue of
osteoporotic mice. Arh Hig Rada Toksikol. 58:3–11. 2007. View Article : Google Scholar
|
28
|
Li CH, Zhao JX, Sun L, Yao ZQ, Deng XL,
Liu R and Liu XY: AG490 inhibits NFATc1 expression and STAT3
activation during RANKL induced osteoclastogenesis. Biochem Biophys
Res Commun. 435:533–539. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhang D, Zhang J, Fong C, Yao X and Yang
M: Herba epimedii flavonoids suppress osteoclastic differentiation
and bone resorption by inducing G2/M arrest and apoptosis.
Biochimie. 94:2514–2522. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wuarin J and Nurse P: Regulating S phase:
CDKs, licensing and proteolysis. Cell. 85:785–787. 1996. View Article : Google Scholar : PubMed/NCBI
|
31
|
Prall OW, Sarcevic B, Musgrove EA, Watts
CK and Sutherland RL: Estrogen-induced activation of Cdk4 and Cdk2
during G1-S phase progression is accompanied by increased cyclin D1
expression and decreased cyclin-dependent kinase inhibitor
association with cyclin E-Cdk2. J Biol Chem. 272:10882–10894. 1997.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Vondracek J, Kozubik A and Machala M:
Modulation of estrogen receptor-dependent reporter construct
activation and G0/G1-S-phase transition by polycyclic aromatic
hydrocarbons in human breast carcinoma MCF-7 cells. Toxicol Sci.
70:193–201. 2002. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hayashi S and Yamaguchi M:
Kinase-independent activity of Cdc2/cyclin A prevents the S phase
in the Drosophila cell cycle. Genes Cells. 4:111–122. 1999.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Suzuki K, Hata S, Kawabata Y and Sorimachi
H: Structure, activation, and biology of calpain. Diabetes.
53(Suppl 1): S12–S18. 2004. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hayashi M, Koshihara Y, Ishibashi H,
Yamamoto S, Tsubuki S, Saido TC, Kawashima S and Inomata M:
Involvement of calpain in osteoclastic bone resorption. J Biochem.
137:331–338. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Murray EJ, Tram KK, Spencer MJ, Tidball
JG, Murray SS and Lee DB: PTH-mediated osteoblast retraction:
Possible participation of the calpain pathway. Miner Electrolyte
Metab. 21:184–188. 1995.PubMed/NCBI
|
37
|
Shimada M, Greer PA, McMahon AP, Bouxsein
ML and Schipani E: In vivo targeted deletion of calpain small
subunit, Capn4, in cells of the osteoblast lineage impairs cell
proliferation, differentiation and bone formation. J Biol Chem.
283:21002–21010. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Murray SS, Grisanti MS, Bentley GV, Kahn
AJ, Urist MR and Murray EJ: The calpain-calpastatin system and
cellular proliferation and differentiation in rodent osteoblastic
cells. Exp Cell Res. 233:297–309. 1997. View Article : Google Scholar : PubMed/NCBI
|