1
|
Alam M and Ratner D: Cutaneous
squamous-cell carcinoma. N Engl J Med. 344:975–983. 2001.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Brash DE, Rudolph JA, Simon JA, Lin A,
McKenna GJ, Baden HP, Halperin AJ and Pontén J: A role for sunlight
in skin cancer: UV-induced p53 mutations in squamous cell
carcinoma. Proc Natl Acad Sci USA. 88:10124–10128. 1991. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kolev V, Mandinova A, Guinea-Viniegra J,
Hu B, Lefort K, Lambertini C, Neel V, Dummer R, Wagner EF and Dotto
GP: EGFR signalling as a negative regulator of Notch1 gene
transcription and function in proliferating keratinocytes and
cancer. Nat Cell Biol. 10:902–911. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
van Hogerlinden M, Rozell BL,
Ahrlund-Richter L and Toftgård R: Squamous cell carcinomas and
increased apoptosis in skin with inhibited Rel/nuclear
factor-kappaB signaling. Cancer Res. 59:3299–3303. 1999.PubMed/NCBI
|
5
|
Brasanac D, Boricic I, Todorovic V,
Tomanovic N and Radojevic S: Cyclin A and beta-catenin expression
in actinic keratosis, Bowen's disease and invasive squamous cell
carcinoma of the skin. Br J Dermatol. 153:1166–1175. 2005.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Lyakhovitsky A, Barzilai A, Fogel M, Trau
H and Huszar M: Expression of e-cadherin and beta-catenin in
cutaneous squamous cell carcinoma and its precursors. Am J
Dermatopathol. 26:372–378. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Doglioni C, Piccinin S, Demontis S, Cangi
MG, Pecciarini L, Chiarelli C, Armellin M, Vukosavljevic T,
Boiocchi M and Maestro R: Alterations of beta-catenin pathway in
non-melanoma skin tumors: Loss of alpha-ABC nuclear reactivity
correlates with the presence of beta-catenin gene mutation. Am J
Pathol. 163:2277–2287. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hisken J and Behrens J: The Wnt signaling
pathway. J Cell Sci. 113:3545–3546. 2000.
|
9
|
Zhang Y, Liu B, Zhao Q, Hou T and Huang X:
Nuclear local-izaiton of β-catenin is associated with poor survival
and chemo-/radioresistance in human cervical squamous cell cancer.
Int J Clin Exp Pathol. 7:3908–3917. 2014.
|
10
|
Li P, Cao Y, Li Y, Zhou L, Liu X and Geng
M: Expression of Wnt-5a and β-catenin in primary hepatocellular
carcinoma. Int J Clin Exp Pathol. 7:3190–3195. 2014.
|
11
|
Cui J, Xi H, Cai A, Bian S, Wei B and Chen
L: Decreased expression of Sox7 correlates with the upregulation of
the Wnt/β-catenin signaling pathway and the poor survival of
gastric cancer patients. Int J Mol Med. 34:197–204. 2014.PubMed/NCBI
|
12
|
Malanchi I, Peinado H, Kassen D, Hussenet
T, Metzger D, Chambon P, Huber M, Hohl D, Cano A, Birchmeier W and
Huelsken J: Cutaneous cancer stem cell maintenance is dependent on
beta-catenin signalling. Nature. 452:650–653. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Popp S, Waltering S, Herbst C, Moll I and
Boukamp P: UV-B-type mutations and chromosomal imbalances indicate
common pathways for the development of Merkel and skin squamous
cell carcinomas. Int J Cancer. 99:352–360. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Choi HI, Sohn KC, Hong DK, Lee Y, Kim CD,
Yoon TJ, Park JW, Jung S, Lee JH and Lee YH: Melanosome uptake is
associated with the proliferation and differentiation of
keratinocytes. Arch Dermatol Res. 306:59–66. 2014. View Article : Google Scholar
|
15
|
Je YJ, Choi DK, Sohn KC, Kim HR, Im M, Lee
Y, Lee JH, Kim CD and Seo YJ: Inhibitory role of Id1 on
TGF-β-induced collagen expression in human dermal fibroblasts.
Biochem Biophys Res Commun. 444:81–85. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lee JS, Kim DH, Choi DK, Kim CD, Ahn GB,
Yoon TY, Lee JH and Lee JY: Comparison of gene expression profiles
between keratinocytes, melanocytes and fibroblasts. Ann Dermatol.
25:36–45. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sohn KC, Shi G, Jang S, Choi DK, Lee Y,
Yoon TJ, Park H, Hwang C, Kim HJ, Seo YJ, et al: Pitx2, a
beta-catenin-regulated transcription factor, regulates the
differentiation of outer root sheath cells cultured in vitro. J
Dermatol Sci. 54:6–11. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Shi G, Sohn KC, Li Z, Choi DK, Park YM,
Kim JH, Fan YM, Nam YH, Kim S, Im M, et al: Expression and
functional role of Sox9 in human epidermal keratinocytes. PLoS One.
8:e543552013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Franken NA, Rodermond HM, Stap J, Haveman
J and van Bree C: Clonogenic assay of cells in vitro. Nat Protoc.
1:2315–2319. 2006. View Article : Google Scholar
|
20
|
Gat U, DasGupta R, Degenstein L and Fuchs
E: De Novo hair follicle morphogenesis and hair tumors in mice
expressing a truncated beta-catenin in skin. Cell. 95:605–614.
1998. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lefebvre V, Dumitriu B, Penzo-Méndez A,
Han Y and Pallavi B: Control of cell fate and differentiation by
Sry-related high-mobility-group box (Sox) transcription factors.
Int J Biochem Cell Biol. 39:2195–2214. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sarkar A and Hochedlinger K: The sox
family of transcription factors: Versatile regulators of stem and
progenitor cell fate. Cell Stem Cell. 12:15–30. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Foster JW, Dominguez-Steglich MA, Guioli
S, Kwok C, Weller PA, Stevanović M, Weissenbach J, Mansour S, Young
ID, Goodfellow PN, et al: Campomelic dysplasia and autosomal sex
reversal caused by mutations in an SRY-related gene. Nature.
372:525–530. 1994. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Schafer AJ, Foster JW, Kwok C, Weller PA,
Guioli S and Goodfellow PN: Campomelic dysplasia with XY sex
reversal: Diverse phenotypes resulting from mutations in a single
gene. Ann NY Acad Sci. 785:137–149. 1996. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chakravarty G, Moroz K, Makridakis NM,
Lloyd SA, Galvez SE, Canavello PR, Lacey MR, Agrawal K and Mondal
D: Prognostic significance of cytoplasmic SOX9 in invasive ductal
carcinoma and metastatic breast cancer. Exp Biol Med (Maywood).
236:145–155. 2011. View Article : Google Scholar
|
26
|
Wang H, He L, Ma F, Regan MM, Balk SP,
Richardson AL and Yuan X: SOX9 regulates low density lipoprotein
receptor-related protein 6 (LRP6) and T-cell factor 4 (TCF4)
expression and Wnt/β-catenin activation in breast cancer. J Biol
Chem. 288:6478–6487. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Matheu A, Collado M, Wise C, Manterola L,
Cekaite L, Tye AJ, Canamero M, Bujanda L, Schedl A, Cheah KS, et
al: Oncogenicity of the developmental transcription factor Sox9.
Cancer Res. 72:1301–1315. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Panza A, Pazienza V, Ripoli M, Benegiamo
G, Gentile A, Valvano MR, Augello B, Merla G, Prattichizzo C,
Tavano F, et al: Interplay between SOX9, β-catenin and PPARγ
activation in colorectal cancer. Biochim Biophys Acta.
1833:1853–1865. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yano F, Kugimiya F, Ohba S, Ikeda T,
Chikuda H, Ogasawara T, Ogata N, Takato T, Nakamura K, Kawaguchi H
and Chung UI: The canonical Wnt signaling pathway promotes
chondrocyte differentiation in a Sox9-dependent manner. Biochem
Biophys Res Commun. 333:1300–1308. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Blache P, van de Wetering M, Duluc I,
Domon C, Berta P, Freund JN, Clevers H and Jay P: SOX9 is an
intestine crypt transcription factor, is regulated by the Wnt
pathway, and represses the CDX2 and MUC2 genes. J Cell Biol.
166:37–47. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Feng Y, Sentani K, Wiese A, Sands E, Green
M, Bommer GT, Cho KR and Fearon ER: Sox9 induction, ectopic Paneth
cells, and mitotic spindle axis defects in mouse colon adenomatous
epithelium arising from conditional biallelic Apc inactivation. Am
J Pathol. 183:493–503. 2013. View Article : Google Scholar : PubMed/NCBI
|