1
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Nishida T, Tsutsui S, Kato M, Inoue T,
Yamamoto S, Hayashi Y, Akasaka T, Yamada T, Shinzaki S, Iijima H,
et al: Treatment strategy for gastric non-invasive intraepithelial
neoplasia diagnosed by endoscopic biopsy. J Gastrointest
Pathophysiol. 2:93–99. 2011. View Article : Google Scholar
|
3
|
Layke JC and Lopez PP: Gastric cancer:
Diagnosis and treatment options. Am Fam Physician. 69:1133–1140.
2004.PubMed/NCBI
|
4
|
Cheng L, Wang P, Yang S, Yang Y and Zhang
Q, Zhang W, Xiao H, Gao H and Zhang Q: Identification of genes with
a correlation between copy number and expression in gastric cancer.
BMC Med Genomics. 5:142012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Brenner H, Rothenbacher D and Arndt V:
Epidemiology of stomach cancer. Methods Mol Biol. 472:467–477.
2009. View Article : Google Scholar
|
6
|
Yeh ET: SUMOylation and De-SUMOylation:
Wrestling with life's processes. J Biol Chem. 284:8223–8227. 2009.
View Article : Google Scholar :
|
7
|
Nie M, Xie Y, Loo JA and Courey AJ:
Genetic and proteomic evidence for roles of Drosophila SUMO in cell
cycle control, Ras signaling and early pattern formation. PLoS One.
4:e59052009. View Article : Google Scholar
|
8
|
Johnson ES: Protein modification by SUMO.
Annu Rev Biochem. 73:355–382. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yang W and Paschen W: SUMO proteomics to
decipher the SUMO-modified proteome regulated by various diseases.
Proteomics. 15:1181–1191. 2015. View Article : Google Scholar :
|
10
|
Nijman SM, Luna-Vargas MP, Velds A,
Brummelkamp TR, Dirac AM, Sixma TK and Bernards R: A genomic and
functional inventory of deubiquitinating enzymes. Cell.
123:773–786. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wilkinson KD: Regulation of
ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J.
11:1245–1256. 1997.PubMed/NCBI
|
12
|
Makarova OV, Makarov EM and Lührmann R:
The 65 and 110 kDa SR-related proteins of the U4/U6.U5 tri-snRNP
are essential for the assembly of mature spliceosomes. EMBO J.
20:2553–2563. 2001. View Article : Google Scholar : PubMed/NCBI
|
13
|
van Leuken RJ, Luna-Vargas MP, Sixma TK,
Wolthuis RM and Medema RH: Usp39 is essential for mitotic spindle
checkpoint integrity and controls mRNA-levels of aurora B. Cell
Cycle. 7:2710–2719. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Rios Y, Melmed S, Lin S and Liu NA:
Zebrafish usp39 mutation leads to rb1 mRNA splicing defect and
pituitary lineage expansion. PLoS Genet. 7:e10012712011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang H, Ji X, Liu X, Yao R, Chi J, Liu S,
Wang Y, Cao W and Zhou Q: Lentivirus-mediated inhibition of USP39
suppresses the growth of breast cancer cells in vitro. Oncol Rep.
30:2871–2847. 2013.PubMed/NCBI
|
16
|
Wen D, Xu Z, Xia L, Liu X, Tu Y, Lei H,
Wang W, Wang T, Song L, Ma C, et al: Important role of SUMOylation
of Spliceosome factors in prostate cancer cells. J Proteome Res.
13:3571–3582. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang X, Yu Q, Zhang Y, Ling Z and Yu P:
Tectonic 1 accelerates gastric cancer cell proliferation and cell
cycle progression in vitro. Mol Med Rep. 12:5897–5902.
2015.PubMed/NCBI
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
19
|
Sallmann FR, Bourassa S, Saint-Cyr J and
Poirier GG: Characterization of antibodies specific for the caspase
cleavage site on poly(ADP-ribose) polymerase: specific detection of
apoptotic fragments and mapping of the necrotic fragments of
poly(ADP-ribose) polymerase. Biochem Cell Biol. 75:451–456. 1997.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang Q, Li Y, Li X, Zhou W, Shi B, Chen H
and Yuan W: PARP-1 Val762Ala polymorphism, CagA+ H. pylori
infection and risk for gastric cancer in Han Chinese population.
Mol Biol Rep. 36:1461–1467. 2009. View Article : Google Scholar
|
21
|
Kim J, Pyun JA, Cho SW, Lee K and Kwack K:
Lymph node metastasis of gastric cancer is associated with the
interaction between poly (ADP-ribose) polymerase 1 and matrix
metallopeptidase 2. DNA Cell Biol. 30:1011–1017. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Tao Z, Gao P and Liu HW: Studies of the
expression of human poly(ADP-ribose) polymerase-1 in Saccharomyces
cerevisiae and identification of PARP-1 substrates by yeast
proteome microarray screening. Biochemistry. 48:11745–11754. 2009.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Nozaki T, Masutani M, Akagawa T, Sugimura
T and Esumi H: Suppression of G1 arrest and enhancement of G2
arrest by inhibitors of poly(ADP-ribose) polymerase: Possible
involvement of poly(ADP-ribosyl)ation in cell cycle arrest
following gamma-irradiation. Jpn J Cancer Res. 85:1094–1098. 1994.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Piao L, Nakagawa H, Ueda K, Chung S,
Kashiwaya K, Eguchi H, Ohigashi H, Ishikawa O, Daigo Y, Matsuda K
and Nakamura Y: C12orf48, termed PARP-1 binding protein, enhances
poly(ADP-ribose) polymerase-1 (PARP-1) activity and protects
pancreatic cancer cells from DNA damage. Genes Chromosomes Cancer.
50:13–24. 2011. View Article : Google Scholar
|